
SERVICE-ORIENTED ARCHITECTURES:
FROM DESKTOP TOOLS TO WEB SERVICES

AND WEB APPLICATIONS

Verena HENRICH, Erhard HINRICHS, Marie HINRICHS,
and Thomas ZASTROW

University of Tübingen, Department of Linguistics
E-mail: {firstname.lastname}@uni-tuebingen.de

Abstract. The migration of desktop tools to the World Wide Web in the form of web
services and web applications has been a significant recent development in many
areas of science including computational linguistics. As is often the case with new
technologies there seems to be a certain amount of confusion among developers and
users alike of these technologies about the meaning of terms such as web services and
web applications. These two terms are often used interchangeably although they refer
to different concepts and accompanying technical realizations and solutions. The
purpose of this chapter is to bring clarity to the four related notions of desktop tools,
web services, web applications, and service-oriented architectures using natural
language processing tools as an illustrative example. A second and related goal is to
explain the significance of the transition from traditional desktop tools to web-based
applications for the emerging field of eScience. In practice, this transition amounts to
a radical departure from a download-and-install-first paradigm to a seamless
integration of multiple external tools into a web-based scientific workflow.

Key words: Service-Oriented Architecture, Web Service, Web Application.

1. INTRODUCTION: MOVING FROM THE LOCAL DESKTOP
TO THE WEB

1.1. Background

Before the World Wide Web was established, computer users had command
line tools and desktop applications that ran locally on their computers. It was
difficult to exchange tools or data over a computer network, as it is now possible
through the Internet. As soon as the World Wide Web became popular, web pages
were accessible and also provided tools for download. First, these web pages were

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 70

static HTML pages, and in case of tools, these were mainly for downloading and
local execution. But soon these static pages were replaced by dynamic web sites
with dynamic server-side scripting (Common Gateway Interface, CGI). Later, Web
2.0 was born with all its online applications that can be accessed through the web –
so called web applications. Here, Web 2.0 stands for a new trend in the online
world – including new interactive web applications with user-generated content
and collaborative techniques for updating web sites. Today, AJAX (Asynchronous
JavaScript and XML), which supports an immediate dynamic interaction between a
user and a web application (similar to the interaction between a user and a desktop
application), is one of the most popular technologies for web applications (Shklar
& Rosen, 2009).

1.2. Motivation for Service-Oriented Architectures

Local installations are often not as comfortable as applications that can be
accessed through the web. Probably the most obvious reason is because the user
has to manage their installation – they need to be downloaded, compiled, installed,
updated, etc. Another important drawback of desktop applications is a problem of
all digital data: after several years the techniques to read and write old media are no
longer available. The resulting challenge is maintainability of applications with an
increasing complexity. Distributed and heterogeneous systems need to interoperate
in a flexible and scalable way. (Josuttis, 2008)

Service-oriented architectures provide one solution for all of these
requirements. A service-oriented architecture (SOA) is a system architecture,
which represents applications as reusable and publicly accessible services. One
feature of a SOA is the possibility of a platform and language independent reuse of
distributed services (Melzer, 2008).

Motivation for Service-Oriented Architectures

Service-oriented architectures offer:
• Transfer of service functionalities from local computers to the web.
• Platform and language independent reuse of distributed services.
• Interoperability between different systems.

1.3. The Goals and the Structure of this Chapter

The purpose of this chapter is to bring clarity to the four related notions of
desktop and command line tool, web service, web application, and service-oriented
architecture and gives common examples for them. As is often the case with new
technologies, there seems to be a certain amount of confusion among developers

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 71

and users alike of these technologies about the meaning of terms. These terms are
often used interchangeably although they refer to different concepts.

Section 2 introduces the basic terminology of the technologies covered in this
chapter. The terms desktop tool, web service, web application, and service-oriented
architecture are explained.

The realization of a service-oriented architecture with web services is the
topic of section 3. First, the three roles of a SOA – service provider, service
registry, and service consumer – are described together with the descriptions of
services. Then, web services are explained in general, before the communication
between web services, the orchestration of web services, and the security of web
services are examined.

An existing example of a service-oriented architecture is introduced in
section 4. The Web-Based Linguistic Chaining Tool (WebLicht) is a SOA,
combining several distributed services from computational linguistics. The
functionality of WebLicht together with its implementation details are explained.

Finally, section 5 gives a conclusion.

2. TERMINOLOGY

2.1. Desktop and Command Line Tools

At the beginning of the computer age, communication between a user and the
computer was based solely on the command line. Later came the first graphical
desktop applications that are often still in use today. Both command line tools and
desktop applications are executed locally on the computer of a user – in contrast to
an application that is executed over a network and can be used in a web browser.

2.2. Web Services

A web service is any service which is available through a network and offers
its functionality over this network. Uniform Resource Locators (URL) are (usually)
used to address web services. Web services can communicate with each other
through standardized interfaces. Internet-based protocols like HTTP are used to
send standardized messages between web services. Web services are not bound to a
single operating system or programming language. (Cerami, 2002)

There are many different descriptions of web services. In this chapter, the
term web service is used with the following meaning:

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 72

Definition 1: Definition of a Web Service

A web service serves functionality through a standardized set of
interfaces and can be accessed through a network. Web services
support machine-to-machine communication. They can be invoked by a
web application or other web services and are often part of a service-
oriented architecture.

Many definitions of web services, like the one from the World Wide Web
Consortium1 (W3C), make reference to the technologies SOAP, WSDL, and
UDDI. These technologies are described in more detail in section 3 below.
However, there are also other technologies for implementing web services, e.g.
XML-RPC or REST. Web services are not necessarily bound to these technologies,
but are defined more broadly. See section 3 for more details of the general idea of
web services as well as possible underlying technologies.

A popular example of a web service is Google Translate2 – a free online
language translation service from Google. Google Translate instantly translates text
and web pages into more than 50 different languages. This web service provides a
simple application programming interface (API) that can be used by web
applications to include the translation web service. Google itself provides a
publicly available web application (at http://translate.google.com) that uses the web
service. See section 3.6 for a demonstration of this web service.

2.3. Web Applications

An application that can be accessed through the Internet is called a web
application. This includes applications that are executed in a client’s (user’s) web
browser, for example HTML sites with JavaScript, Java Applets, Java Web Start,
Flash, or Rich Internet Applications.

Definition 2: Definition of a Web Application

“What is a “web application”? It is a client-server application
that uses a web browser as its client program. It delivers interactive
services through web servers distributed over the Internet (or intranet).
A web site simply delivers content from static files. A web application
can present dynamically tailored content based on request parameters,
tracked user behaviors, and security considerations.”

(Shklar & Rosen, 2009)

1 See http://www.w3.org/TR/ws-arch/
2 See http://translate.google.com

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 73

A web application is not necessarily limited to a single web service but can
also combine the functionality of several web services. Thus, a web application can
be described as the combination of a browser-based user interface which accesses
web services in the background3. This scenario is illustrated in Figure 1. Especially
if more than one web service is used in a web application, these web services need
to be coordinated and combined somehow, which is indicated by the orchestration
box. This orchestration part may either represent a complex combination algorithm
or simply the logic behind a web application.

As web browsers are available on virtually every computer today, web
applications are widespread and very popular. This is because users do not need to
download and install programs before execution. Due to their platform independence
web applications can be easily used in heterogeneous system environments.

Some common web applications include webmail, online shopping sites, or
e-learning platforms. Web applications are also becoming popular in the
computational linguistics domain. Das Wörterbuch der deutschen Sprache des 20.
Jahrhunderts4 (DWDS) is an example of a web application from the field of
computational linguistics. It represents a digital dictionary system based on large
amounts of electronically available corpora. The web application can be executed
in a web browser and allows searching and visualizing words. DWDS combines
four lexical information types: dictionary articles, automatically generated
information about synonyms, hypernyms, and hyponyms, keyword-in-context
examples (co-occurrences), and statistical concurrency information of neighbored
words (collocations).

Figure 1. A web application may be represented by a user interface interacting with web services.

3 Note that there are various possibilities of how a web application can be described. Some

may differ fundamentally from the description in this chapter.
4 See http://www.dwds.de

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 74

2.4. Service-Oriented Architectures (SOA)

A service-oriented architecture is a paradigm. It does not represent a concrete
technique but an abstraction to a system architecture that can be instantiated in
different ways. There is no widely accepted definition of a service-oriented
architecture. This chapter follows the definition of Melzer et al. (2010), which
covers the main features of service-oriented architectures:

Definition 3: Definition of a Service-Oriented Architecture

“A service-oriented architecture is a system architecture, which
represents diverse, different, and possibly incompatible methods or
applications as reusable and publicly accessible services, and thereby
offers a platform and language independent usage and reuse.”

(Melzer et al., 2010), translated from German5

The most important components are the services, which are all distributed and
combined by the SOA into one system. The services of a SOA may be used
directly by a user, by a web application, or even by each other. A web application
that in turn interacts with the web services may act as an interface of a service-
oriented architecture. This composition is illustrated in Figure 2.

Figure 2. A service-oriented architecture including a web application and web services.

5 The original definition is in German: “Unter einer SOA versteht man eine Systemarchitektur,

die vielfältige, verschiedene und eventuell inkompatible Methoden oder Applikationen als wieder
verwendbare und offen zugreifbare Dienste repräsentiert und dadurch eine plattform- und
sprachenunabhängige Nutzung und Wiederverwendung ermöglicht.”

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 75

Services in a SOA expose stable interfaces and enable loose coupling.
Messaging is the communication paradigm used. The service interfaces are
described in terms of the messages a service consumes and produces. A service
interface description may be implemented and provided for use on multiple
locations by multiple parties.

An example of a service-oriented architecture from the field of computational
linguistics is the Web-Based Linguistic Chaining Tool (WebLicht), which is
explained in detail in section 4.

3. SERVICE-ORIENTED ACHITECTURES USING WEB SERVICES

This section starts with an overview of a service-oriented architecture
(subsection 3.1). The three roles of a SOA are outlined in subsections 3.2, 3.3, and
3.4. Subsection 3.5 covers the description of services in a SOA. Both SOAP-based
and RESTful web services are introduced in subsection 3.6, followed by
descriptions of the orchestration of web services (subsection 3.7) and the security
of web services (subsection 3.8).

3.1. Overview of a Service-Oriented Architecture

A service-oriented architecture is an abstract paradigm, which describes an
architectural style but not a concrete technique. The most important components of
a SOA are the distributed services, which are all combined into one system. The
services of a SOA may be used directly by a user, by a web application, or even by
each other. They might represent wrappers around command line tools to make
them available through the web or they might provide functionality that was
formerly served by local desktop applications.

The fundamental features of a service-oriented architecture are (Melzer et al.,
2010):

• Loose coupling and dynamic binding of the services: Applications or
other web services search, find, and integrate the services dynamically
during run-time, which means that – at the time the program is built – it is
not known which services will be called later.

• Service registry: maintains a list of all registered and available services
with the possibility to search for a service.

• Use of standards: To allow the use of a service, all interfaces need to be
specified in a machine-readable open standard.

• Reuse and simplicity: The separation of a service interface and its
implementation allows the simple reuse of services in different environments.

• Distribution: The idea behind a service-oriented architecture is that the
services may be distributed at several different locations in the web.

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 76

To support these fundamental features, a service-oriented architecture defines
three roles: Service providers, service consumers, and service registries (see the
following subsections 0, 0, and 0 for descriptions). The workflow – illustrated in
Figure 3 – of how these roles interact with each other is as follows (the numbering
below corresponds to the numbers in Figure 3):

1. Register service: Service providers register their services in a service
registry (which may also be provided as a service). This makes it possible
to discover the services for a service consumer.

2. Look up service: The service consumer searches for a service in the list
of services located at a service registry.

3. Send service location: The answer of the service registry to the service
consumer contains references to the description of the service in question
and to the service itself.

4. Request service: The service consumer decides which service to use with
the help of its description. After selecting a service to be used, the service
consumer uses the address of the web service to request the responsible
service provider for the service.

5. Interact with service: The service consumer uses a service by invoking
it. Now, both service consumer and provider interact with each other.
Note that the services are not downloaded.

Figure 3. The three roles of a SOA with their interactions.

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 77

3.2. Service Provider

The services themselves are offered by service providers and are made
available through a common online platform. Before the services can be used, the
service provider needs to register them in a service registry to make them available
for public searches. Besides offering the services, the service provider needs to
maintain the services and keep them up to date. Further tasks concern a quality of
service assurance and the security of the services, which includes authentication
and authorization. (Melzer et al., 2010)

In summary, service providers act as hosting servers (offer services), as
managers (register services), and as administrators (update services and provide
quality of service and security of the services) all at once.

3.3. Service Registry

The primary task of a service registry is to offer the service consumer the
possibility to find services. Therefore, the service providers need to register their
services in such a registry. Information about the services – especially references to
the service interface descriptions and to the proper services – are stored in a service
registry. The services themselves are not stored in a service registry – the registry
only stores information which service provider maintains a service and where it can
be found. A service registry is sometimes also called broker, discovery component,
or repository.

The service registry offers loose coupling, but, in practice, if service
consumer and service provider know each other, the service registry is often left
out. This saves resources and reduces the execution time, but it also reduces
flexibility, because changes at the services need to be distributed not only through
the service registry. This disadvantage is expensive especially on a long-term basis.
(Melzer et al., 2010)

The technical specification of a discovery service for web services based on
SOAP can be described by UDDI (Universal Description, Discovery and
Integration). UDDI enables service providers to publish web services and service
consumers to find web services. Therefore, both references to the descriptions of
web service interfaces and references to the actual implementation of a web service
are stored. This information comes from the WSDL files (see subsection 3.5).
(Cerami, 2002)

3.4. Service Consumer

The service consumer looks up a web service in a service registry and selects
a service with the help of the service description. The provider of a service does not
need to be known to the service consumer beforehand – the important part is that

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 78

there are standards available that describe the interface of a service. Then the
service consumer requests and binds a web service from the responsible service
provider, before the service can be used. The communication between service
consumer and service provider takes place through a protocol that is known to
both. It is – especially for the service consumer – very important to have open
standards for the description of a service: to find a service, to know how to invoke
the service, and to know how to communicate with the service. (Melzer et al., 2010)

3.5. Service Description

A service description allows a service consumer to find, invoke, and use a
service. The description should be in an open standard, independent from the
implementation, the programming language, and the underlying architecture.
(Melzer et al., 2010)

The Web Services Description Language6 (WSDL) is an example of such a
standard to describe the interface of a web service (Melzer et al., 2010). WSDL
files are encoded in XML and describe the functionalities of SOAP-based web
services (Richardson & Ruby, 2007). (See subsection 3.6 for more information on
SOAP.) A WSDL file can be requested by a web service and it can be used by a
software developer to implement a web application. The WSDL specification
consists of six major elements (Cerami, 2002):

• Definitions: The root element of all WSDL documents is the definitions
element, which defines the name of the web service and declares
namespaces.

• Types: All data types are described by the types element.
• Message: All messages that will be transmitted, are described by the

message element.
• PortType: The portType element defines all supported functions and

operations.
• Binding: This element specifies how the web service needs to be

implemented and how messages will be transmitted. Therefore, it may
include SOAP-specific information.

• Service: The address – usually a URL – where a web service is located and
where it can be invoked is encoded in the service element.

An example of a WSDL file is given in the Appendix at the end of the paper. The
equivalent of WSDL for RESTful web services is the Web Application Description
Language7 (WADL). (See subsection 3.6 for more information on REST.)

6 See http://www.w3.org/TR/wsdl20/
7 See http://www.w3.org/Submission/wadl/

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 79

3.6. Web Services

There is a wide range of alternative technologies that can be used to realize
distributed services. Especially the choice of the standardized messaging system
differs. Earlier implementations of distributed services were based on CORBA or
COM, but these technologies were not bound to the web. Web-based distributed
services may be realized by the following:

• XML-RPC: XML Remote Procedure Calls are a data structure format to
represent function calls with their return values. Some web services still
use XML-RPC on top of HTTP, but it is mostly outdated. (Richardson &
Ruby, 2007)

• SOAP: At the beginning, SOAP was an acronym for Simple Object Access
Protocol, but now SOAP is simply a proper name and not an acronym
anymore (Melzer et al., 2010). SOAP is based on RPCs and it describes an
XML-based envelope format for exchanging messages between computers
(Richardson & Ruby, 2007).

• REST: Representational State Transfer, uses four standard functions of the
HTTP protocol: GET, PUT, DELETE, and POST (Burke, 2007).

The two commonly used messaging formats for web services are SOAP and REST.
Both are described in more detail in the following paragraphs.

SOAP

SOAP is a platform-independent XML-based envelope format for
exchanging messages between computers. It is possible to use SOAP in various
messaging systems and with various transport protocols, but mainly SOAP is based
on Remote Procedure Calls and is transported via HTTP. SOAP consists of three
major parts: (Cerami, 2002)

• SOAP envelope specification,
• Data encoding rules,
• RPC conventions.

To exemplify SOAP, XMethods.net provides a simple weather service example,
which gives the current temperature by zip code (see Figure 4). The example is
taken from (Cerami, 2002) and Ethan Cerami’s web site8. There is a method
getWeather that requires a zip code as a string and returns the temperature as a
float value. The corresponding web service description in WSDL can be found in
the Appendix at the end of the paper.

8 See http://www.webservicex.net/WS/faq.aspx

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 80

Figure 4. SOAP example: XMethods weather service.

The SOAP request needs to include the name of the method (here getWeather)
to invoke and all required parameters (here zipcode). The following listing
shows an example request for the XMethods weather service:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getWeather xmlns:ns1="urn:examples:weatherservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding/">
 <zipcode xsi:type="xsd:string">10016</zipcode>
 </ns1:getWeather>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

This request uses XML namespaces and XML Schemas. The corresponding SOAP
response might look like this:

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://www.w3.org/2001/09/soap-envelope"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:getWeatherResponse xmlns:ns1="urn:examples:weatherservice"
 SOAP-ENV:encodingStyle="http://www.w3.org/2001/09/soap-encoding">
 <return xsi:type="xsd:int">65</return>
 </ns1:getWeatherResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 81

REST

REST, which stands for Representational State Transfer, is an architectural
style for distributed hypermedia systems, defined by Roy Fielding in his
dissertation (Fielding, 2000). The implementation of RESTful web services –
especially in comparison to the implementation of SOAP-based web services – is
simpler. The architectural principles of REST are the following (Burke, 2007):

• Addressable resources: Each resource needs to be addressable through a URL.
• A uniform, constrained interface: A small set of well-defined methods are

used to access resources. This means that only the HTTP methods are used,
mainly GET, PUT, DELETE, and POST.

• Representation-oriented: A service may have different implementations of
the same representation.

An example from the computational linguistics of a RESTful web service is
Google Translate. The API specification of this service is available online9.
The URL that addresses the language translation service
(http://ajax.googleapis.com/ajax/services/language/trans
late) can be extended with parameters to translate a string. For example, the
string Hello World can be translated from English to German by the following
extended URL:

http://ajax.googleapis.com/ajax/services/language/translate?v=1.0&q=
Hello%20world&langpair=en%7Cde

The string to be translated – Hello world – is encoded by the extension
q=Hello%20world where %20 represents a space sign. Similar is the
specification of the language pair, which is from English to German in this
example, encoded by langpair=en%7Cde where %7C represents a vertical bar.
The corresponding translation from Hello world into German is Hallo Welt, which
can be seen in the result:

{"responseData": {"translatedText":"Hallo Welt"}, "responseDetails":
null, "responseStatus": 200}

The user interface of Google Translate (see http://translate.google.de) provides
interaction to the translation web service for humans. An easy way for entering the
input parameter (text to translate and language pair) is offered. The URL to call the
service is produced from the user-specified input and the service is called. The
response string of the service is then parsed and presented to the user.

9 See http://code.google.com/intl/de-DE/apis/ajaxlanguage/documentation/

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 82

3.7. Orchestration of Services

A SOA consists of several services, which need to be composed and executed
in a workflow. A workflow describes the combined execution of several services in
succession. The term orchestration describes the conditions (the execution order
and input parameters) under which the individual web services are executed, i.e.
the business logic, and the communication between the web services. (Melzer
et al., 2010)

The Business Process Execution Language (BPEL) is an XML-based OASIS
standard10 that allows the specification of web service interactions. With the help of
BPEL, workflows consisting of web services can be described.

3.8. Security of Web Services

Service providers need to be concerned about the security of their web
services and servers. Otherwise, everyone who knows the URL of a web service
might use it without permissions. There are a few established techniques for
building a security architecture for web services, e.g.:

• SAML: Security Assertion Markup Language, is an XML-based OASIS
standard11 for exchanging authentication and authorization data between a
service consumer and a service provider.

• Certificates: Web services can be made secure with digital certificates that
verify the identity of a service consumer through a third-party such as
Verisign12. In case the service consumer requests a web service, the web
service checks the certificate and reacts accordingly.

• WS-Security: Web Services Security, is an extension to SOAP that allows
an easy and flexible use of existing security techniques of web services
(Melzer et al., 2010). WS-Security is also an OASIS standard13.

4. EXAMPLE SOA: THE WEB-BASED LINGUISTIC CHAINING TOOL

The Web-Based Linguistic Chaining Tool (WebLicht; (Hinrichs et al., 2010))
is a service-oriented architecture for linguistic analysis of text. A linguistic analysis
of text usually starts with tokenizing a text before it can be part-of-speech tagged,
parsed, and so on. In a desktop environment, this process is often time-consuming

10 See http://www.oasis-open.org/specs/#wsbpelv2.0
11 See http://www.oasis-open.org/specs/#samlv2.0
12 http://www.verisign.com
13 See http://www.oasis-open.org/specs/#wssv1.0

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 83

because a user has to install all necessary tools. Difficulties often arise when the
result of one tool needs to be given as input to another tool. The problem stems
from the fact that these tools do not share a common format for representing
linguistic annotation layers. WebLicht solves this problem with a common,
standard-conformant data format (see subsection 4.4) and allows the user to run
several linguistic tools like tokenizers, taggers, or parsers – implemented as web
services – to be executed in succession. It is possible to build a chain of linguistic
web services (similar as with Gate and UIMA).

WebLicht is implemented as a web application so that users do not need to
download and install any software on their own computers or to concern
themselves with the technical details involved in building linguistic tool chains.
The web application ensures that the tool chains are valid, generates the calls to the
web services, and displays the results.

4.1. The Web Services

WebLicht provides several linguistic web services like tokenizers, taggers, or
parsers for different languages. In all, there are about 70 web services for seven
different languages14. The web services themselves are provided from many
different service providers.

The web services in WebLicht make functionality of existing desktop
applications and command line tools, which was only available locally, available
through the web. WebLicht is part of a prototypical infrastructure that was
developed to facilitate chaining of LRTs (language resources and tools) services.
WebLicht allows the integration and use of distributed web services with
standardized APIs. The nature of these open and standardized APIs makes it possible
to access the web services from nearly any programming language or shell script.

All web services within WebLicht are implemented as RESTful web services.
They are all independent of programming language and server environment. The
communication between the web services is based on the TCF data format (Heid et
al., 2010). (See subsection 4.4 for details about TCF.) This format is given as input
to and produced as output from every web service (except the first one which takes
plain text as input).

4.2. The Registry

Every web service in WebLicht is registered in a central registry, which is
located in Leipzig. In this registry, metadata and processing information (with
input and output specifications) about every registered web service are stored. The
metadata includes e.g. information about creator, name, and address of a service.

14 As of this writing, June 2010.

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 84

The input and output specifications of each web service are required in order to
determine which processing chains are possible. Combining the metadata and the
processing information, the repository is able to offer functions for the chain
building process.

The registry consists of a relational database containing all the information
about the web services. Metadata and processing information about every
registered web service can be obtained through web services. Therefore, the
registry itself is also realized as a RESTful web service.

4.3. The WebLicht User Interface

The WebLicht web application15 is developed and hosted in Tübingen. The
user interface is implemented with Web 2.0 technologies, using an AJAX driven
toolkit. It incorporates the Java EE 5 technology and can be deployed in any Java
application server.

Figure 5 shows a screenshot of the WebLicht web interface. The right panel
entitled Chain 1 offers the main functionality of WebLicht. It is possible to specify
the input text and to orchestrate the chain of linguistic web services.

Input of plain text to the chain can be specified in three ways (in the Input
tab, hidden in the screenshot16): i) entered by the user, ii) file upload from the user's
local hard drive, or iii) selecting one of the sample texts offered by WebLicht.
Various format converters can be used to convert uploaded files into the data
exchange format (TCF) used by WebLicht. Input file formats accepted by
WebLicht include plain text, Microsoft Word, and RTF.

The orchestration of the web services is done in the Tools tab. The panel Next
Choices indicates which web services may be chosen next, depending on the
previously chosen web services. This list is individually generated by inspecting
the metadata of the tools which were already added to the chain. Web services
already added to the chain are listed in the Chosen Tools panel below.

The chaining mechanism of WebLicht ensures that the list of possible next
web services only contains web services that ensure a valid next step in the chain.
For example, a part-of-speech tagger can only be added to a chain after a tokenizer
was chosen. The metadata of each tool contains information about the annotations
which are required in the input data of a web service and which annotations are
added by that web service.

15 See https://weblicht.sfs.uni-tuebingen.de
16 The interested reader might take a look at the actual user interface at https://weblicht.sfs.uni-

tuebingen.de to exactly follow all explanations that are not shown in the screenshot.

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 85

Valid workflows can combine web services from various service providers.
There is no restriction to predefined combinations of web services. This allows
users to compare the results of several tool chains and find the best solution for
their individual use case.

On the left side, in the Tool Descriptions panel, the metadata of a selected
web service (author, URL, description etc.) is shown. These data are extracted on-
the-fly from the service registry. The final result of running the tool chain as well
as each individual step can be visualized with an integrated annotations viewer or
in XML (XML View panel in Figure 5), or downloaded to the user's local hard drive
in WebLicht's own data exchange format TCF (see subsection 4.4).

Figure 5. A screenshot of the WebLicht web interface.

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 86

4.4. The Text Corpus Format (TCF)

All web services within WebLicht use a common data format for input and
output. This Text Corpus Format (TCF; (Heid et al., 2010)) is an internal data
exchange format based on namespace-aware XML. TCF is conformant with GrAF
(Ide & Suderman, 2007), which is an extension of the ISO standard LAF (ISO/DIS
24612:2009). It was designed to efficiently enable the seamless flow of data
between the individual services of a service-oriented architecture.

The format stores all linguistic annotation layers in a single file. Annotation
layers are accumulated in the outputs of each applied web service call, which
means that the format is incrementally enriched by one or more additional layers
for every executed web service. The annotation layers are rendered in a stand-off
annotation format. Each web service is permitted to add an arbitrary number of
layers, but it is not allowed to change or delete any existing layer. Thus, each layer
in TCF represents the linguistic annotation result of a single web service and it is
possible to trace back the results of every step in the chain.

Figure 6 illustrates the incremental approach of TCF: In step 1, there is only
plain text in the TCF document. Step 2 also contains tokens – the linguistic
annotation result of a tokenizer – in addition to the plain text. In step 3, a third
layer containing part-of-speech tags – the result of a part-of-speech tagger – is
shown. Step 4 adds a parse tree layer to the TCF document.

Figure 6. Each web service incrementally adds an annotation layer to TCF.

An example of the Text Corpus Format containing the first three layers is shown in
Figure 7. The first layer with the plain text is represented in line 7. Lines 8 to 17
encode the tokens layer, where each token has an ID attribute that serves as a
unique identifier in other annotation layers. The tokens constitute the central
atomic elements in TCF to which other annotation layers refer. The third layer
containing the part-of-speech tags (lines 18 to 27), for example, refers to the tokens
by the tokID attribute.

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 87

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <D-Spin xmlns="http://www.dspin.de/data" version="0.3">
 3 <tns:MetaData xmlns:tns="http://www.dspin.de/data/metadata">
 4 <tns:source></tns:source>
 5 </tns:MetaData>
 6 <tns:TextCorpus xmlns:tns="http://www.dspin.de/data/textcorpus"
lang="en">
 7 <tns:text>He buys an apple and a drink.</tns:text>
 8 <tns:tokens>
 9 <tns:token ID="t_0">He</tns:token>
10 <tns:token ID="t_1">buys</tns:token>
11 <tns:token ID="t_2">an</tns:token>
12 <tns:token ID="t_3">apple</tns:token>
13 <tns:token ID="t_4">and</tns:token>
14 <tns:token ID="t_5">a</tns:token>
15 <tns:token ID="t_6">drink</tns:token>
16 <tns:token ID="t_7">.</tns:token>
17 </tns:tokens>
18 <tns:POStags tagset="PennTB">
19 <tns:tag tokID="t_0">PP</tns:tag>
20 <tns:tag tokID="t_1">VBZ</tns:tag>
21 <tns:tag tokID="t_2">DT</tns:tag>
22 <tns:tag tokID="t_3">NN</tns:tag>
23 <tns:tag tokID="t_4">CC</tns:tag>
24 <tns:tag tokID="t_5">DT</tns:tag>
25 <tns:tag tokID="t_6">NN</tns:tag>
26 <tns:tag tokID="t_7">.</tns:tag>
27 </tns:POStags>
28 </tns:TextCorpus>
29 </D-Spin>

Figure 7. TCF example with three layers: plain text, tokens, and part-of-speech tags.

5. CONCLUSION

Man-machine interaction has come a long way. Punch cards were used to
interact with the very first computers. These were gradually replaced by command
line interaction and graphical user interfaces. Now, there are service-oriented
architectures that seem to be the logical next step in the evolution. Service-oriented
architectures are widely used in business applications but are also of interest in
scientific computing in all areas of science. This includes the humanities and social
sciences – especially because of the heterogeneity of their research paradigms and
accompanying tools and systems. In a SOA the different tools can be made
interoperable and can be loosely coupled with each other. This makes it possible to
create synergistic workflows which in turn facilitate deeper data analysis and
interpretation.

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 88

In computational linguistics, language resources and tools can now be made
available with service-oriented architectures for a broader range of users than
before. The download-and-install-first paradigm is avoided as well, since the
functionality in SOAs now allow easy maintenance, updating, and backup. Service-
oriented architectures are platform and language independent and make it easily
possible to combine distributed services. In contrast to these advantages, the main
disadvantage of a SOA is that functionality is only usable online – it binds users to
the web. But, in turn, this enables access to cutting edge technologies such as cloud
computing.

REFERENCES

1. BURKE B., RESTful Java with JAX-RS, O’Reilly Media Inc., Sebastopol, CA, USA, 2009.
2. CERAMI E., Web Services Essentials – Distributed Applications with XML-RPC, SOAP, UDDI

& WSDL, O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.
3. FIELDING R.T., Architectural Styles and the Design of Network-based Software Architectures,

dissertation, University of California, Irvine, UK, 2000.
4. HEID U., SCHMID H., ECKART K., and HINRICHS E., A Corpus Representation Format for

Linguistic Web Services: the D-SPIN Text Corpus Format and its Relationship with ISO
Standards. Proceedings of the Seventh Conference on International Language Resources and
Evaluation (LREC 2010), Valletta, Malta, 2010.

5. HINRICHS E., HINRICHS M., and ZASTROW T., WebLicht: Web-based LRT services for
German. Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics (ACL 2010), Uppsala, Sweden, 2010.

6. IDE N. and SUDERMAN K. GrAF, A Graph-based Format for Linguistic Annotations.
Proceedings of the Linguistic Annotation Workshop at ACL 2007, Association for
Computational Linguistics, Prague, Czech Republic, 2007.

7. JOSUTTIS N.M., SOA in Practice – The Art of Distributed System Design, O’Reilly Media Inc.,
Sebastopol, CA, USA, 2007.

8. MELZER I et al., Service Service-oriented Architectures with Web Services, 3rd ed., Spektrum
Verlag Heidelberg, Germany, 2008.

9. MELZER I et al., Service-orientierte Architekturen mit Web Services: Konzepte – Standards –
Praxis, 4th ed., Spektrum Akademischer Verlag Heidelberg, Germany, 2010.

10. RICHARDSON L. and RUBY S., RESTful Web Services – Web services for the real world,
O’Reilly Media, Inc., Sebastopol, CA, USA, 2007.

11. SHKLAR L. and ROSEN R., Web Application Architecture: Principles, Protocols and Practices,
2nd ed., John Wiley & Sons Ltd, Chichester, England, 2009.

ABBREVIATIONS, KEY TERMS, AND DEFINITIONS

• AJAX: Asynchronous JavaScript and XML, a Web 2.0 technology for
developing dynamic web sites.

• API: Application Programming Interface

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 89

• BPEL: Business Process Execution Language, is an XML-based OASIS
standard that allows the specification of web service interactions. With the
help of BPEL, workflows consisting of web services can be described.

• Certificates: Web services can be made secure with digital certificates that
verify the identity of a service consumer through a third-party such as
Verisign17. In case the service consumer requests a web service, the web
service checks the certificate and reacts accordingly.

• CGI: Common Gateway Interface
• COM: Component Object Model
• CORBA: Common Object Request Broker Architecture, is a standard

architecture for distributed object systems.
• Desktop tool: A tool that is installed and executed locally on a users’

computer.
• DWDS: Das Wörterbuch der deutschen Sprache des 20. Jahrhunderts, see

http://www.dwds.de
• ESB: Enterprise Service Bus
• GrAF: Graph Annotation Format, is an extension of the ISO standard LAF

(ISO/DIS 24612:2009).
• HTML: HyperText Markup Language, a popular markup language for

creating web pages.
• HTTP: Hypertext Transfer Protocol, a standard transfer protocol in the

World Wide Web.
• LAF: Linguistic Annotation Format, is an ISO standard (ISO/DIS

24612:2009).
• LRT: Language Resources and Tools
• REST: Representational State Transfer, is an architectural style for

distributed hypermedia systems, and one way to implement web services.
• RPC: Remote Procedure Call
• SAML: Security Assertion Markup Language, is an XML-based OASIS

standard for exchanging authentication and authorization data between a
service consumer and a service provider.

• Service consumer: part of a service-oriented architecture, searches for
services and uses them.

• Service provider: offers the proper services in a service-oriented
architecture.

• Service registry: stores information of all services in a service-oriented
architecture and offers the service consumer the possibility to find services.

17 http://www.verisign.com

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 90

• SOA: Service-Oriented Architecture, is a system architecture, which
represents diverse, different, and eventually incompatible methods or
applications as reusable and public accessible services, and thereby
offers a platform and language independent usage and reuse. (Melzer,
2008)

• SOAP: Simple Object Access Protocol (former)
• UDDI: Universal Description, Discovery and Integration, describes a

discovery service for web services based on SOAP.
• URL: Uniform Resource Locator, specifies the location of a resource. A

popular example of a URL is the address of a web page in the World Wide
Web, e.g. the URL to access WebLicht is https://weblicht.sfs.uni-tuebingen.de

• WADL: Web Application Description Language, the equivalent of WSDL
for RESTful web services.

• Web 2.0: In this chapter, Web 2.0 stands for a new trend in the online
world – including new interactive web applications with user-generated
content and collaborative techniques for updating web sites.

• Web application: is a client-server application that uses a web browser as
its client program. It delivers interactive services through web servers
distributed over the Internet (or intranet). A web site simply delivers
content from static files. A web application can present dynamically
tailored content based on request parameters, tracked user behaviors, and
security considerations. (Shklar & Rosen, 2009)

• Web service: A web service is any service that is available over the
Internet, uses a standardized XML messaging system, and is not tied to any
one operating system or programming language. (Cerami, 2002)

• WebLicht: Web-Base Linguistic Chaining Tool, see
https://weblicht.sfs.uni-tuebingen.de

• WSDL: Web Service Definition Language, is a standard to describe the
interface of a web service. WSDL files are encoded in XML and describe
the functionalities of SOAP-based web services.

• WS-Security: Web Services Security, is an extension to SOAP that allows
an easy and flexible use of existing security techniques of web services
(Melzer et al., 2010). WS-Security is also an OASIS standard.

• XML: Extensible Markup Language

Service-Oriented Architectures: From Desktop Tools to Web Services and Web Applications 91

APPENDIX: WSDL EXAMPLE

This WSDL example is taken from Cerami (2002) and Ethan Cerami’s web
site18. See that book for descriptions.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="WeatherService"
 targetNamespace="http://www.ecerami.com/wsdl/WeatherService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.ecerami.com/wsdl/WeatherService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="getWeatherRequest">
 <part name="zipcode" type="xsd:string"/>
 </message>
 <message name="getWeatherResponse">
 <part name="temperature" type="xsd:int"/>
 </message>

 <portType name="Weather_PortType">
 <operation name="getWeather">
 <input message="tns:getWeatherRequest"/>
 <output message="tns:getWeatherResponse"/>
 </operation>
 </portType>
 <binding name="Weather_Binding" type="tns:Weather_PortType">
 <soap:binding
 style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getWeather">
 <soap:operation soapAction=""/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:weatherservice" use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:examples:weatherservice" use="encoded"/>
 </output>
 </operation>
 </binding>

18 See http://www.webservicex.net/WS/faq.aspx

Verena Henrich, Erhard Hinrichs, Marie Hinrichs, and Thomas Zastrow 92

 <service name="Weather_Service">
 <documentation>WSDL File for Weather Service</documentation>
 <port binding="tns:Weather_Binding" name="Weather_Port">
 <soap:address
 location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

