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ABSTRACT

We propose a morphologically-informed neural Sequence to Sequence (Seq2Seq) architecture
for lemmatization. We evaluate the architecture on German and compare it to a log-linear
state-of-the-art lemmatizer based on edit trees. We provide a type-based evaluation with an
emphasis on robustness against noisy input and uncover irregularities in the training data.
We find that our Seq2Seq variant achieves state-of-the-art performance and provide insight in
advantages and disadvantages of the approach. Specifically, we find that the log-linear model

has an advantage when dealing with misspelled words, whereas the Seq2Seq model generalizes
better to unknown words.

KEYWORDS: Lemmatization, German, Error Analysis, Sequence2Sequence.
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1 Introduction

Lemmatization is the process of mapping a form to its dictionary entry. Lemmas are a requirement
to associate any inflected form with a lexical resource. In Natural Language Processing, lemmas
are common features for a wide range of tasks and have been shown to improve results in
parsing (Dozat and Manning, 2018) and machine translation (Sennrich and Haddow, 2016).

Besides being useful as features for statistical classifiers, lemmas are also of importance for other
areas of linguistics. A common task in distributional semantics, for instance, is to algorithmically
obtain a vector representing a certain word. A simple approach, which obtains discrete represen-
tations, computes the pointwise mutual information (PMI) between a word and its cooccurents.
Word embeddings, in contrast to PMI, are continuous. They can be obtained through various
methods, such as maximizing the similarity between word and context vectors (Mikolov et al.,
2013). Both approaches are known to produce bad representations for rare words. This problem
is especially relevant for morphologically-rich languages where the occurrences of rare words are
divided between their possibly numerous different inflections. Building the word representations
based on lemmas leads to less sparse representations, as the inflections of a word are seen as
the same symbol, combining their occurrences. The sparsity issue also applies when querying
a treebank of a morphologically-rich language. Here, a researcher might be interested in the
usage of a certain word. Without the lemma as the common feature, every inflection of a word
needs to be spelled out to obtain all usages. As a consequence, most treebanks contain lemmas
as an annotation layer. As manual annotation is expensive and new methods require more data,
we observe the rise of big web-corpora with automated annotation, which subsequently leads to
a growing need for performant and robust lemmatization, fit for noisy web text.

In this work, we propose a morphologically-informed variant of the recently successful Sequence
to Sequence (Seq2Seq) architecture (Sutskever et al., 2014) for lemmatization (Oh-Morph) and
provide an in-depth comparison with the Lemming system (Miiller et al., 2015) on two German
treebanks: TiiBa-D/Z (Telljohann et al., 2004) and NoSta-D (Dipper et al., 2013). In contrast to
other recent work, we train and evaluate on types such that there is no overlap between training
and test set. By type we denote unique combinations of form, lemma, POS and morphological
tags. Table 1 specifies the input and expected output of the lemmatizer:

Input Output
Form POS  Morphological tags | Lemma
folgenden NN case:dative | number:singular | gender:neuter folgendes

folgenden ADJA case:genitive | number:plural |gender:feminine | folgend

Table 1: Example of input and output of the lemmatizer.

The POS and morphological tags incorporate the necessary context information to lemmatize
ambiguous forms. The type-based evaluation gives us the opportunity to perform a common
model comparison but also to highlight problematic edge cases that would have been obscured
under a token-based evaluation. To further our insight into the robustness of the models against
noisy input, we use automatic morphological annotations instead of a gold standard both at
training and test time. Moreover, we pay close attention to how the models deal with misspelled
and unknown words. Given the usually well-formed newspaper texts in most treebanks, this is
an aspect of the evaluation that is often overlooked.

We find that the log-linear Lemming outperforms Oh-Morph by a slight margin. Lemming, being
able to leverage a word list, works best on lemmatizing non-standard language, like dialect
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variants or misspelled words. It should be noted, though, that non-standard spelling is still one
of the biggest error sources. Oh-Morph, in contrast, generalizes better to unknown words as
we find Lemming’s performance to deteriorate on out-of-vocabulary items. We conclude that
both systems have their advantages and believe that further improvements can be made by
improving their robustness against non-standard spelling of input words.

2 German Morphology
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Figure 1: Locations of edit operations to transform forms to their lemma in TiiBa-D/Z.
Inflectional patterns. As shown in Figure 1, inflections in German are largely limited to
the suffix. However, certain verb forms deviate from this pattern and introduce prefixes as in
ge-schlossen ‘closed’, the past participle of schliefsen ‘close’. Another important exception are
separable verbs, like abschliefsen. Such verbs have a prefix (e.g. ab- in abschliefSen) that appears
separately when the verb is used as a finite verb in a declarative main clause. In such clauses, the
verb is in the left bracket and the separable prefix appears in the right bracket, as demonstrated
in (1).

(1) Als er erfuhr, dass er die Tiir abschlief3en soll, schloss er sie ab.
When he heard, that he the door lock should, locked he it (prefix-ab).
‘When he heard that the door should be locked, he locked it.’

Separable verbs have special infinitives and participles. They introduce the infix -zu-, a German
infinitive marker, as in ab-zu-schliefsen, or -ge-, a participle marker, as in ab-ge-schlossen. Forms
like schliefsen, where inflections change the parts of the root, are considered to be irregular.
Irregular inflections are not limited to verbs but also occur, less frequently in other word classes
such as adjectives, e.g. gut ‘good’, besser ‘better’ and am besten ‘best’.

Challenges. A question that arises when dealing with separable verbs is whether their
prefixes should be considered part of the lemma. Given the difference in meaning between e.g.
aufgeben ‘to give up’ and geben ‘to give’ it would be very problematic to drop them. Keeping
them, on the other hand, introduces the need to reattach separated prefixes which requires
topological field or dependency annotations, steps usually performed after lemmatizing. A
possible way out is to disregard the prefixes and reattach them once the required syntactical
annotations have been made. This path, however, leads to the problem of deciding which of
the possibly multiple prefixes is separable. Some can always be separated, some never, for
others both separable and non-separable verb forms exist. In TiiBa-D/Z (Telljohann et al., 2004),
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lemmas mark separable prefixes with a ‘#’ between prefix and stem, lemmatization of these
forms then means to infix ‘#’ for non-separated separables and to reattatch the prefix with the
marker for separated ones. In the version used for this work, the prefixes have been removed
in order to reach an homogeneity of annotation between both separated and non-separated
separable verbs.

An additional challenge in the form of syncretism can be found in animate nouns. Some nouns
with the masculine singular ending -er and the feminine -in, like Schauspieler/-in ‘actor / actress’
have no marked nominative plural for the masculine form. Others, like Vorsitzenden in (2), do
not mark gender in nominative plural.

(2) Die Vorsitzenden trafen sich zum Krisengespréach.
The chair(wo)men met (refl) for-a crisis-meeting.
‘The chairpersons met for a crisis meeting.’

Miiller et al. (2015) mention that is important to know the lemma of these forms in order to
assign a gender. We agree, however, in some cases the singular form can only be recognized if,
possibly extra-sentential, discourse information is available. In other cases, e.g. if a plural word
describes a mixed gendered group, the word cannot be reduced to a singular form since no
un-gendered singular exists. As German grammar enforces gender, case and number congruency,
syncretic forms are often disambiguated by accompanying determiners. While these prove to be
useful in some cases, it should be noted that they display quite some ambiguity as well.

3 Background and Related Work

In the following section, we will first discuss existing lemmatization systems and then introduce
methods relevant to our proposed model.

Previous work. Some early lemmatization systems employ finite state technology and solve
morphological analysis and lemmatization as one task (Minnen et al., 2001; Schmid et al., 2004;
Sennrich and Kunz, 2014). Given enough expert effort, these are able to achieve very good
coverage. However, as their performance directly correlates with the completeness of their lexica,
most transducers handle out-of-vocabulary items poorly. Moreover, as non-statistical tools they
are not able to disambiguate syncretic forms. Others enrich the input with linguistic annotations
and choose the correct transformation to the according lemma Chrupata (2006). Later a synergy
between assigning these annotations and the lemma jointly was found (Chrupata et al., 2008;
Miiller et al., 2015). All these aforementioned approaches rely on sometimes language-specific
sets of handcrafted features.

Lemming. The Lemming system (Miiller et al., 2015), in the same vein as Chrupata (2006) and
the Morfette system (Chrupata et al., 2008), treats lemmatization as a classification problem.
During training, they derive edit-trees to transform a form into its lemma and then learn to
choose the correct lemma from a set of candidates, generated by applying all possible edit-trees
to a form. This simple approach achieves state-of-the-art performance on multiple languages. It
greatly benefits from its ability to incorporate arbitrary global features, such as frequency counts
or a word list. Miiller et al. (2015) report improved performance by training Lemming and the
Conditional Random Field (CRF) morphological tagger MarMot (Miiller et al., 2013) jointly.
However, their evaluation is bound to the token level, which we suspect to bias their evaluation
towards frequent tokens, that we also expect to appear both in training and validation set.
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Sequence to Sequence. The Sequence to Sequence (Seq2Seq) architecture (Sutskever et al.,
2014) is a special variant of Recurrent Neural Networks (RNN). In contrast to regular RNNs,
where the number of outputs is fixed, Seq2Seq enables mapping an arbitrary amount of inputs
to an arbitrary number of outputs. These domain-agnostic models can be seen as feature-
less and have achieved impressive results in several sequence transduction tasks, including
machine translation (Sutskever et al., 2014; Cho et al., 2014; Bahdanau et al., 2014), text
summarization (See et al., 2017), constituency parsing (Vinyals et al., 2015), and closely related
to lemmatization, morphological re-inflection (Cotterell et al., 2017, 2016). The common
Seq2Seq architecture, also known as encoder-decoder network, consists of two RNNs. The
encoder processes each input symbol in sequence while maintaining an internal state. The
decoder is then initialized with the internal state of the encoder and predicts one symbol per
step until a special end-of-sequence token is predicted. The input at every decoding step is the
previously predicted token, with the first step receiving a special beginning-of-sequence token.

Attention. As the standard encoder-decoder architecture compresses its inputs into a fixed size
vector, it struggles with long input sequences (Cho et al., 2014). A way to view this problem
is that due to the longer input sequence, the encoder has to compress more information over
a longer distance into the same dimensionality. Bahdanau et al. (2014) solve this issue by
allowing the decoder to not only access the final state of the encoder but also each intermediate
state, which they achieve through alignment mechanisms. Luong et al. (2015) simplified the
alignment calculations by introducing the dot-product as scoring function for the attention
mechanism. As both attention variants need to calculate the alignment weights for all encoder
states at each decoder step, they have quadratic time complexity in O(TU) where T and U are
the lengths of the input and output sequence (Raffel et al., 2017). Raffel et al. (2017) reduce
this to linear time with their monotonic Attention. It enforces linear alignments, where the
decoder can only move forward in focusing on encoder states.

Seq2Seq lemmatization. Bergmanis and Goldwater (2018) applied the Seq2Seq architecture
to lemmatization. They describe their approach as context sensitive, as the encoder processes not
only the word form but also 20 characters of left and right context. In contrast to other systems,
they do not require morphological or POS tags. However, as Miiller et al. (2015), they evaluate
on the token level. Schnober et al. (2016) compared pruned CRFs with Seq2Seq architectures
and also evaluate on lemmatizing Finnish and German verbs taken from the Wiktionary Dataset
(Durrett and DeNero, 2013). Besides limiting the task to verbs, they also lack a qualitative and
exhaustive evaluation on the specific task of lemmatization.

4 Setup

In the following section, we will first describe the two variants of Lemming (Miiller et al., 2015)
that we used for comparison (Lemming-Base, Lemming-List), and then introduce our proposed
model, Ohnomore-Seq2Seq.

4.1 Lemming

We use two variants of Lemming (Miiller et al., 2015): Lemming-Base and Lemming-List.
Lemming-Base utilizes its built-in features, including several alignment, edit-tree and lexical
features. As Lemming supports the addition of arbitrary features, we also use Lemming-List in our
experiments which adds a word list.! Both Lemming-Base and Lemming-List were trained using

!Available at https://sourceforge.net/projects/germandict accessed on 09.29.2018
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the perceptron classifier with hashed features and morphological tags as additional features.

4.2 Ohnomore-Seq2Seq

Model. Ohnomore-Seq2Seq (Oh-Morph) (Piitz, 2018) closely resembles the classical encoder-
decoder Seq2Seq architecture (Sutskever et al., 2014), extended with Luong-style monotonic
Attention (Luong et al., 2015; Raffel et al., 2017). We dropped the reversing of the input, as
we could not observe any differences in performance, likely due to attention which relaxes
long-range dependencies. Furthermore, we concatenate the embedded morphological and POS
tags with the final state of the encoder, resulting in a d + p + (m * n) dimensional vector, where
d is the state size of the encoder, p and m the size of morph- and POS- embeddings and n
the maximal number of morphological tags encountered during training. This vector is then
fed through a feed-forward layer with the SELU activation function (Klambauer et al., 2017),
resulting in a vector with the dimensionality of the decoder’s state size, which is the initial
state of the decoder. Alternative setups, including bi-directional encoder, beam-search and a
CRF-layer did not lead to improvements. It should be noted that the inclusion of a word list, as
for Lemming-List, is not easily done, since Oh-Morph does not generate a candidate set ahead of
time and therefore cannot include features of the lemma.

Hyperparameters. For training, we use mini-batches of 2,048 examples and discard forms
longer than 60 characters. We use the Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 0.03 and clip gradients with a norm bigger than 5. The character embeddings have 100
dimensions, POS embeddings 50 and morph embeddings 30. We apply a dropout of 0.8 on the
input embeddings. As recurrent cells in the encoder and decoder we use LSTMs (Hochreiter
and Schmidhuber, 1997) with a recurrent dropout of 0.5. We train for 10,000 steps and then
stop after 15 epochs without an improvement.

5 Evaluation and Data

Corpus | # Tokens # Types
TiBa-D/Z 1.8M 213,705
NoSta-D 39,504 5,643

NoSta-D w/o. TiiBa-D/Z 34,504 4,010

Table 2: TiiBa-D/Z, NoSta-D and NoSta-D without the TiiBa-D/Z sub-corpus with token and
type count.

Evaluation. In contrast to other recent work in lemmatization like Miller et al. (2015) or
Bergmanis and Goldwater (2018), we decided to evaluate on types instead of tokens. We did so
because we suspect that token-based evaluation is biased towards getting frequent tokens right.
Moreover, it is to be expected that a token which ends up both in the training and validation
set will be predicted right, simplifying the task. We perform 10-fold cross validation on our
in-domain data and average the accuracy of the 10 models on the out-of-domain data.

Data. Table 2 reports token and type counts on our data sets: TiiBa-D/Z (Telljohann et al., 2004),
a treebank containing articles of the German newspaper Taz, and as out-of-domain data NoSta-D
(Dipper et al., 2013), a corpus containing non-standard variations of German. To account for
a realistic setting with potentially erroneous morphological tags, we used the state-of-the-art
CRF morphological tagger MarMot (Miiller et al., 2013) to annotate TiiBa-D/Z and NoSta-D
using 5-fold jackknifing. After tagging we filter duplicates, such that every combination of
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form, lemma, POS and morphological tags is unique. We further remove irregular forms and
closed class words,? as we consider it as impossible to infer the lemma when using on type level
disjoint sets. Moreover, we suspect that both irregular forms and closed class words can be
easily lemmatized using dictionaries. We retrieved a list with 2,039 irregular forms from Celex
German (Baayen et al., 1993). Since NoSta-D’s lemma column is also used for normalization on
sentence level e.g. insertions of elided tokens, we filter all tokens where an appended ‘|’ marks
a continuation or where an empty form is mapped to a lemma.

6 Results and Discussion

| TiiBa-D/Z NoSta-D NoSta-D w/o. TiiBa-D/Z

Oh-Morph 97.00% 83.69% 79.41%
Lemming-Base | 96.78% 83.45% 79.00%
Lemming-List 97.02% 83.96% 79.73%

Table 3: Accuracy on TiiBa-D/Z, NoSta-D and NoSta-D without the TiiBa-D/Z sub-corpus.
Lemming-List outperforms Oh-Morph by a slight margin on all sets. Lemming-Base consistently
performs the worst. Best results are bold.

|Oh-Morph Lemming-Base Lemming-List Shared

# total 6,078 6,078 6,078 207,627
# errors 3,088 3,565 3,051 3,326
% errors 50.80% 58.65% 50.20% 1.60%

Table 4: Unique and shared predictions on TiiBa-D/Z with error rates. There are 207,627 types
where all models had identical predictions and 6,078 where one had a unique prediction. The
error rate within the identical predictions is only 1.6%. The unique predictions have consistent
error rates of more than 50%.

| TiBa-D/Z Falko BeMaTaC Anselm Unicum Kafka
Oh-Morph 94.22% 89.83% 78.86% 27.19% 75.38% 91.07%
Lemming-Base 94.32% 90.16% 78.80% 26.44% 74.07% 90.91%
Lemming-List 94.37% 90.93% 79.44% 30.33% 74.56% 91.08%

Table 5: Accuracy on the different NoSta-D sub-corpora. Lemming-List shows the best perfor-
mance across all sub-corpora apart from Unicum (online chats), here Oh-Morph achieves the
highest accuracy. TiiBa-D/Z: news paper texts, Falko: L2 learner language, BeMaTac: spoken
language, Anselm: historical text, Unicum: online chats, Kafka: literary prose. Best results are
bold.

Results. Table 3 provides the results on TiiBa-D/Z and NoSta-D, the results on each NoSta-D
sub-corpus will be discussed in the following section. We observe that Lemming-List shows
the overall best performance. Oh-Morph performs slightly worse on TiiBa-D/Z and by a bigger
margin on NoSta-D. Lemming-Base shows the lowest performance across all sets. Table 4 dissects
the results on TiiBa-D/Z into two sets, shared and unique predictions, and presents the error
rates on the respective set. The shared set contains the 207,627 types for which all three models
produced the same output. The unique set consists of the 6,078 types for which at least one of

2Available at http://www.sfs.uni-tuebingen.de/Elwis/stts/Wortlisten/WortFormen.html 2ac-
cessed on 09.29.2018
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the models produced an unique prediction. There is an approximate 50-50 split between the
3,051 to 3,565 model-unique and the 3,326 shared errors. The large number of shared errors
might hint at issues within the training data like tagging errors.

NoSta-D sub-corpora. NoSta-D consists of six diverse sub-corpora, ranging from online chats
over learner language to historic texts. Table 5 reports the accuracy on each subcorporpus. We
find that both Lemming models show a better performance on L2 learner language. Oh-Morph
seems to operate well on online chats whereas, Lemming-List shows the best results with spoken
language and by a clear margin on historic German text. The overall performance on the historic
text is bad, most likely due to spelling variations that are not common anymore and very far
from their canonical spelling, like the form vrouwe with the standard spelling Frau ‘woman’.

6.1 Error Analysis

In the following section we will work out model specific strengths and provide some insight in
anormalities in the training data.

6.1.1 TiiBa-D/Z

Analysis. We sampled 22,007 types from TiiBa-D/Z and classified the incorrect portions of the
predictions of the three models into 7 error classes described in the following section. Types for
which all models made the same predictions will be discussed separately. For 600 at least one
model had a unique prediction. For 21,407 the predictions were identical.

Error classes. For our analysis we assign the following 7 error classes:

1. Unsolvable: cases that fail due to annotation errors within the lemma, like spelling
mistakes; and cases where sentential information is needed, e.g. a truncated form that is
part of an enumeration that receives a full lemma.

2. Spelling: misspelled forms which the lemmatizer did not correct.

. NE: errors connected to named entities.

4. Separable: verbs with a separable prefix where the model retained the prefix or other
verbs where a prefix was mistakenly cut off.

5. Wr. morph cases where the predicted lemma corresponds to wrong morphological tags,
e.g. a plural noun which was tagged as nominative singular where the inflected form was
returned as the lemma.

6. Ign. morph: cases where correct morphological tags have been ignored, e.g. a form was
changed where the morphological tags imply that the form is the lemma.

7. Solvable all cases we consider solvable that are not captured by the other classes. For
example, predictions where a superfluous character remains as a suffix.

w

Apart from assigning these fine-grained classes, we also group the errors by whether we consider
them solvable or not. The unsolvable group is already described by the Unsolvable class. As
borderline solvable we consider:

e Spelling and NE, as they might require world knowledge;
e Separable, since we believe that these are hard to pick up when training on types; and
e Wr. morph, as correct morphological tags are a requirement to lemmatize syncretic forms.

The solvable group counts the two members:

e Ign. morph as the necessary information is present; and

Proceedings of the 17th International Workshop on Treebanks and Linguistic Theories (TLT 2018); Linképing Electronic Conference Proceedings #155 [page 200 of 207]



e the Solvable class.

| Correct || Solvable Ign. morph || Wr. morph  Separable NE Spelling || Unsolvable

Oh-Morph 49.50% 19.17% 4.33% 5.83% 2.00% 7.67%  9.33% 2.17%
Lemming-Base | 42.50% 21.33% 6.00% 8.33% 5.83% 5.67%  8.17% 2.16%
Lemming-List | 50.33% 18.50% 6.17% 7.50% 5.17% 5.67%  3.50% 3.16%

Table 6: Result of the analysis of 600 of the non-identical sampled predictions from Oh-Morph,
Lemming-Base and Lemming-List. Spelling is the biggest single error cause for both list-less
models. Lemming-List shows the most issues with morphological tags. Correct corresponds to
the error rates presented in Table 4. Abbreviations: wr.: wrong, ign.: ignored, NE: named entity.

Result. The results of our analysis are presented in Table 6. We see that Lemming-Base and
Lemming-List show more problems connected to morphological tags. Oh-Morph might benefit
from its capability to form a fine-grained character-based morphological representation in
addition to the morphological tags, enabling a decision whether a form-tag combination is
valid or not. Linear classifiers, like the perceptron used by both Lemming variants, in contrast,
cannot capture these feature interactions. Further, we find that Oh-Morph outperforms both
Lemming-List and Lemming-Base on separable verbs. With named entities Oh-Morph displays
issues, we especially find problems with word final -s. The name of the sports brand Adidas, for
example, got reduced to Adida, as the -s was recognized as a genitive marker. These errors seem
to stem from an uncertainty whether a genitive ending in -s is syncretic with the nominative or
inflectional. With spelling errors Lemming-List shows the least errors. Given the clear margin
between it and Lemming-Base we believe that the word list provides crucial information whether
a generated candidate lemma is well-formed or not.

Intersection. In 3,326 cases all three models made identical errors. The analysis of 340 errors
is provided in Table 7. We find that the biggest cause of shared errors is an inability to correct
spelling errors (37.65%). Further outstanding are erroneous morphological tags (14.41%) and
errors connected to named entities (13.82%).

| Solvable Ign. Morph || Wr. morph Separable NE Spelling || Unsolvable
Intersection | 18.53% 6.47% || 14.41% 2.35%  13.82% 37.65% | 6.76%

Table 7: Result of the analysis of 340 errors of the 21,407 sampled identical predictions. Spelling
is the biggest single cause of errors.

Vocab | Type Oh-Morph Lemming-Base Lemming-List || % unknown
Train Form 95.74% 95.21% 95.62% 48.97%
Lemma | 96.32% 96.04% 95.98% 34.09%
List Form 94.34% 94.27% 94.20% 28.34%
Lemma | 96.48% 96.47% 95.70% 28.98%

Table 8: Average share of unknown lemmas and forms per validation-fold of TiiBa-D/Z with
accuracies of Oh-Morph, Lemming-Base and Lemming-List. Oh-Morph performs the best on all
out-of-vocabulary items. Train rows report the accuracy on forms and lemmas not contained in
the training data, List on items not contained in the word list of Lemming-List. Best results are
bold.

Out of vocabulary. Table 8 quantifies the performance of the models on unknown forms and
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lemmas.?> We inspect how the models deal with out-of-vocabulary items with respect to two
vocabularies: Lemming-List’s word list and the respective training fold. It should be noted that
neither Lemming-Base nor Oh-Morph use the word list, we include their results for the sake of
comparison. For all vocabularies Oh-Morph seems to be suited best to deal with unknown items.
Lemming-List performs surprisingly poorly on unknown lemmas and shows worse results than
Lemming-Base on these items. It seems that while Lemming-List is able utilize its word list to
deal with spelling errors, it also relies on its completeness and shows a drop in performance on
unknown entities.

| Oh-Morph Lemming-Base Lemming-List Shared
# total 171 171 171 283
% errors 85.07% 72.51% 71.93% 68.90%

Table 9: Unique and shared errors on dialect and colloquial language. None of the models is
suited to deal with dialect variants.

Colloquial language. In TiiBa-D/Z words from dialects and colloquial language with non-
standard spelling are mapped to their standard spelling with a trailing underscore. These
form-lemma pairs are often only vaguely related, sometimes through phonetic similarities as
in verschandolln-verschandeln_ ‘to vandalize’ or Frollein-Frdulein_ ‘miss’, in other cases like
koscht-kosten_ ‘to cost’ they are contractions. A problem when dealing with these cases is that
the borders between lemmatization and text normalization with spelling errors and dialectical
variants become blurry. Some dialect forms can easily be mistaken for spelling errors, with
others context might be needed to retrieve the canonical form. In total there are 454 types
where a lemma has a trailing underscore. The error rates on these types are reported in Table 9.
We find that none of the models is suited to deal with these types as none manages to predict
the right word in more than 30% of the cases. Moreover, both Lemming models infer the right
lemma twice as often as Oh-Morph.

Ambiguity. During the annotation process, we noticed several form-pos-morph combinations
that were associated with more than one lemma. Further examination revealed that there were
in fact 921 cases in which the training data contains contradictory examples. The vast majority
of these are nouns and named entities, accounting for 803 cases. Both Lemming models have an
error rate of 72% on these cases, while Oh-Morph fails in 66% of the cases to give the expected
lemma. Most of the ambiguous examples are nominalized verbs like (der) Gehende ‘the walker’
/ (ein) Gehender ‘a walker’ where for definite and indefinite a separate nominative singular
exists. According to the TiiBa-D/Z annotation guidelines (Telljohann et al., 2006) these forms
should be lemmatized to the indefinite nominative singular. As our data is machine tagged we
searched gold-standard TiiBa-D/Z for ambiguous combinations and find 738 cases that cannot
be lemmatized using our featurization. It remains to be explored whether some of these are
disambiguated by their context or if they should be considered inconsistent.

6.1.2 NoSta-D

Analysis. For a preliminary analysis, we sampled the predictions for 4,519 types from NoSta-D.
For 4,207 the predictions of the three models were identical, for 312 at least one model produced
a unique lemma. As before, we will first discuss the unique errors, then the identical ones.

3Forms and lemmas can occur both in the training and evaluation data, as our types are tuples of form, lemma, POS
and morphological tags.
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Classes. During the annotation process, we noticed that the lemmatization style in NoSta-D is
different from the one in TiiBa-D/Z. Comparatives and superlatives, for instance, are reduced
to their positive, whereas in TiiBa-D/Z the correct lemma is the nominative singular of the
respective degree. To account for cases where the produced lemma is correct according to
the TiiBa-D/Z guidelines (Telljohann et al., 2006), we also assign the correct class to these
tokens, hence Correct does not solely reflect the share of predictions that matched the lemma
but also those that we consider correct. It should be noted that this only eliminates false
negatives but not false positives where a lemma matches the gold-standard which would be
considered wrong in T{iBa-D/Z style. For cases where the correct lemma was not certain to us
we assign the Undecided class, this happened mostly to nominalized verbs that can only be
disambiguated within context. An analysis of these errors remains for the future. To account
for the prevalence of colloquial language, dialect forms and historic forms, we also introduced
the class Non-standard in our analysis of NoSta-D.

| Correct Undecided || Solvable Ign. morph || Wr. morph Separable NE  Spelling Non-standard || Unsolvable

Oh-Morph 38.14% 2.24% 17.30% 0.64% 1.60% 2.88% 0.32%  7.05% 21.47% 8.33%
Lemming-Base | 37.82% 1.92% 15.06% 0.64% 6.09% 3.20% 0.32%  7.37% 21.15% 6.41%
Lemming-List | 47.43% 2.88% 11.53% 0.32% 5.77% 2.88% 0.32%  4.17% 18.58% 6.08%

Table 10: Preliminary result of the analysis of 312 of the non-identical sampled predictions of
the three models on NoSta-D. The biggest error sources are non-standard language and spelling,
Lemming-List has the least of these errors. Abbreviations: wr.: wrong, ign.: ignored, NE: named
entity.

Preliminary results. The preliminary results of the analysis of the unique predictions of NoSta-D
are presented in Table 10. These results mostly confirm the model-specific findings of the analysis
on TiiBa-D/Z. Most likely due to their prevalence in the corpus, we find that errors connected to
colloquial language, dialect forms, and non-standard spelling are the most common ones for
all three models. Again, we find that Lemming-List produces the least errors of these classes.
Moreover, we find an indication, stronger than on T{iBa-D/Z, that Oh-Morph suffers less from
erroneous morphological tags, possibly due to tagging errors being more frequent on the noisy
data. There are more unsolvable cases than on TiiBa-D/Z, most of these are related to the
normalization of nicknames in the BeMaTaC sub-corpus of NoSta-D which we consider to be
solvable only on a sentence or even extra-sentential level.

Correct Undecided || Solvable Ign. morph | Wr. morph Separable NE  Spelling Non-standard || Unsolvable
92.42%  1.16% || 0.33% 0.02% || 0.09% 0.05%  0.5% 1.38% 241% || 1.62%

Table 11: Preliminary result of the analysis of 4,207 of the identical sampled predictions on
NoSta-D. Non-standard language and spelling are the biggest error sources. Abbreviations: wr::
wrong, ign.: ignored, NE: named entity.

Intersection. The analysis of the sampled unique predictions on NoSta-D is presented in
Table 11. Since we also assigned the Correct class, we include it in the table. The first thing
to notice is that unsolvable errors make up the second largest class. This is mostly explained
by the aforementioned normalization of chat nicknames. Within the intersection we find that
most errors are connected to non-standard variations like the historic forms within the Anselm
sub-corpus. This confirms our finding on colloquial language in TiiBa-D/Z. Further notable is
again the big share of spelling related errors. We believe that the amount of errors related to
the surface form of the words, e.g. non-standard spelling or spelling mistakes, overshadows the
amount of other errors that could have been produced if the normalization step would not have
failed already.
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Out of vocabulary While we did not find a distinctive effect for out-of-vocabulary items as
in TiiBa-D/Z, we discover a known issue of Seq2Seq architectures, namely unseen input and
output symbols. Oh-Morph is not equipped to deal with unknown characters and just dropped
them in most cases. Lemming on the other hand, will only fail if the unknown character is part
of an inflection, another advantage of its edit-trees. The issue for the Seq2Seq model might be
tackled by introducing a copy item which replaces individual characters in parts where form
and lemma align.

Inconsistencies. During our analysis of NoSta-D, we found several lemmas that were in fact
inflected forms. A search for the lemma Ndgel ‘nails’, for example, brings up 7 hits in the
BeMaTaC sub-corpus. Further, we find that verbal adjectives are in some cases reduced to the
verb they are derived from and in others to the nominative singular of the adjective. A more
thorough examination remains for future work.

7 Conclusion

In this work, we have proposed a morphologically-informed variant of the Seq2Seq architecture
for lemmatization. We evaluated its effectiveness on German and provided a detailed error
analysis with an emphasis on robustness and show strengths and weaknesses of the respective
models. The results show that the Seq2Seq architecture achieves competitive performance.
More precisely we found that Oh-Morph is less prone to suffer from wrong morphological tags
which might lead to a better ability to incorporate them into its predictions. Lemming-List,
on the other hand, seems to benefit from its word list, as it indicates whether a candidate is
well-formed or not. Lemming’s big advantage here is that it is a classifier over a candidate
set rather than a generative model. Generating the potential lemmas ahead of time allows
to incorporate features of the lemma, such as spelling or it being present in a word list. A
Seq2Seq system, in contrast, cannot recover from false predictions which might be a reason for
its tendency to transfer spelling errors from form to lemma. Turning to out-of-vocabulary items,
we find that Lemming-List’s advantage on malformed forms leads to the worst performance on
unknown lemmas, whereas Oh-Morph shows the best performance with both unknown forms
and lemmas.

Since both spelling errors and unknown tokens are to be expected when processing noisy
web-corpora, we believe that good performance on noisy input and unknown tokens should
not be a contradiction. For future work we plan to tackle the issue with spelling errors, as
we saw that almost 40% of the shared errors were due to these cases. Possible approaches
include incorporating a word list or more global optimization algorithms like Minimum Risk
Training (Shen et al., 2016) or MIXER (Ranzato et al., 2015). Work in this direction should
explore the intersection of lemmatization and text normalization, possibly in a joint training
scenario. Given the influence of wrong morphological tags we are also confident that improving
on morphological tagging will yield better results. Here it could be worthwhile to explore
whether jointly assigning morphological tags and lemmas yields the same improvements as
Miiller et al. (2015) and Chrupata (2006) report. Another possibility that should be explored,
pointed out by an anonymous reviewer, is the investigation of the effect of frequency by training
on tokens.

As we have found that Lemming-List and Oh-Morph have somewhat complementary strengths,
other future work should look into a possible ensemble consisting of an edit-tree classifier and
a Seq2Seq model. A first naive approach could add the Seq2Seq lemmas to the candidate set
of Lemming. A natural follow-up would then explore neural classifiers for edit scripts, with
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a potentially simpler architecture than that of a fully fledged Seq2Seq model. The idea is
compelling as it would allow to include arbitrary features, including lemma features, while
keeping the flexibility of a character based encoder, with, in contrast to the log-linear Lemming,
feature interactions that come with neural networks.
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