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In this paper we will explore the similarities and differences between two feature logic-
based approaches to the composition of semantic representations. The first approach is
formulated for Lexicalized Tree Adjoining Grammar (LTAG, Joshi and Schabes 1997), the
second is Lexical Resource Semantics (LRS, Richter and Sailer 2004) and was first defined
in Head-driven Phrase Structure Grammar. The two frameworks have several common
characteristics that make them easy to compare: 1. They use languages of two-sorted
type theory for semantic representations. 2. They allow underspecification: LTAG uses
scope constraints > while LRS provides component-of constraints <. 3. They use feature
logics for computing semantic representations. 4. They are designed for computational
applications. By comparing the two frameworks we will also point out some characteristics
and advantages of feature logic-based semantic computation in general.

1 Introduction

Except for a few early and largely informal explorations of the relationship be-
tween semantic representations in unification-based frameworks using typed fea-
ture logics (TFLs) and the lambda calculus-based Montague Grammar of main-
stream research on semantics in linguistics (c.f. Moore 1989; Nerbonne 1992), for
a long time there was little or no explicit connection between these two tech-
niques for semantic representations. Sailer (2003) finally proved that a feature
logic for Head-driven Phrase Structure Grammar (HPSG, Pollard and Sag 1994)
such as Relational Speciate Re-entrant Language (RSRL, Richter 2004b) is suf-
ficiently expressive to encode a higher-order logic such as Intensional Logic or
two-sorted type theory (Ty2, Gallin 1975), and the combinatorial system of the
lambda calculus. This means that it is mathematically possible to completely em-
bed a categorial semantics such as Flexible Montague Grammar (Hendriks 1993)
within a TFL grammar. However, undecidability results make it unattractive to
integrate RSRL or alternative feature logics that are expressive enough for a di-
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rect logical specification of HPSG grammars wholesale in grammar development
environments. On the other hand, reducing the expressivity of the feature logic
prevents a logical specification in the feature logic of the syntax of Ty2 and basic
operations of the lambda calculus such as beta reduction. In addition, it should
be noted that it is at least an open question whether the assumption is justified
that semantic composition in natural languages can be adequately described by
the techniques provided by the lambda calculus. Other means of semantic compo-
sition might turn out to be better suited to analyze the relationship between the
semantics of syntactically complex expressions and their constituents in natural
languages.

To prevent misunderstandings it should be stressed very clearly that we do
not mean to say that the lambda calculus is in any sense insufficient for specifying
the composition of meanings along the syntactic structures of natural languages.
Due to the universal nature of the lambda calculus as an abstract characterization
of computation it is likely that this goal could be achieved. The question that we
want to raise is whether the lambda calculus is a linguistically adequate tool for
expressing as directly as possible the most important linguistic generalizations
over the mechanisms of semantic composition in natural languages. One of the
prime purposes of this paper is to present key concepts of an attractive alternative
to the lambda calculus. These key concepts will appear in two mathematical
implementations. The two views on the same concepts that our comparison of
two frameworks offers are meant to highlight what belongs to the abstract ideas
behind what we essentially view as one single alternative, and what is due to
particular realizations of the basic concepts in terms of different mathematical
structures in two grammar frameworks.

Unification-based LTAG semantics (Kallmeyer and Romero 2007) and LRS
(Richter and Sailer 2004) draw different conclusions from the tension between the
expressivity needed in a feature logic for the specification of the combinatorics
and representations of Ty2, and the requirements of effective computation. As
one of the consequences, they use feature logics of different expressivity for simi-
lar purposes in semantic composition. Like Minimal Recursion Semantics (MRS,
Copestake et al. 2005) they do not use the lambda calculus but the feature logic
for the semantic combinatorics. In contrast to MRS, however, which focuses al-
most entirely on the design of semantic representations for large-coverage gram-
mars without saying much about the interpretation of the derived representations,
LTAG semantics and LRS subscribe to model-theoretic semantics and truth con-
ditions specified in terms of Ty2. To overcome the tension between the demands
on the expressivity of the feature logic and on the computational properties of
the system, LTAG semantics and LRS choose different options. LTAG seman-
tics combines a restricted feature logic with other mathematical structures that
provide semantic representations and take over computational tasks. LRS relies
on a uniform logical specification and a re-implementation of the LRS module of
grammars in a computationally tractable constraint language. Important features
of these two options of implementing constraint-based semantic composition will
be worked out in the course of our discussion below.
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In this paper we will investigate the two solutions which our two frameworks
provide for integrating a model-theoretic semantics with syntactic structures using
typed feature logics. We will focus on the technical choice points, identifying those
properties of the two syntax-semantics interfaces which the two approaches have
in common despite the technical differences, and those which differ due to different
means of combining the syntactic and semantic module of grammar. This will also
help distinguish fundamental properties of a feature logic-based syntax-semantics
interface from accidental properties of a single system which are due to particular
grammar architectures.

The paper is structured as follows: Sections 2 and 3 will lay the mathematical
foundations for the comparison of the two frameworks. Section 2 will briefly intro-
duce the most important logical properties of the HPSG framework, indicate how
LRS can be specified in the same TFL as an HPSG grammar, and present the
most important principles of LRS together with the analysis of a simple sentence.
Section 3 is the counterpart of Section 2 for LTAG: A short summary of the math-
ematical architecture of LTAG is followed by an overview of the framework for
LTAG with semantic unification and the role of TFL in this framework. The anal-
ysis of our simple example illustrates how the components of the theory interact.
The next two sections are concerned with a direct comparison of specific crucial
aspects of LRS and LTAG semantics. Section 4 focuses on the treatment of scope
ambiguities and the role which TFL plays in their description. Section 5 shows
how the differences in the application of semantic underspecification techniques
in LRS and LTAG lead to different analyses of negative concord, an interesting
linguistic phenomenon at the syntax-semantics interface. Section 6 turns to the
conceptually important question of whether semantic systems whose combina-
torics is based on feature logic are compositional. Although received opinion has
it that they are not, Section 6 sketches a construction for LTAG that indicates that
this might not be true. Section 7 concludes our investigation by a summary of the
differences between the two systems and of the common properties of TFL-based
semantic computation.

2 Lexical Resource Semantics

In the LRS architecture the feature logic may be used to specify the entire gram-
mar, including well-formed Ty2 terms as semantic representations, and their mode
of composition. This idea is particularly straightforward to implement in HPSG,
since HPSG assumes an expressive feature logic as the single means of stating
the entire grammar. While HPSG is by no means the only grammar architecture
which can be combined with an LRS component, combining them is particularly
simple, because the HPSG constraint language itself can be employed to specify
the LRS structures. In this section we will explain how this can be achieved and
what it means for an HPSG grammar with LRS semantics.



Richter and Kallmeyer LRS and LTAG

2.1 HPSG: Grammars as Logical Theories
From a mathematical point of view, an HPSG grammar is a logical theory con-
sisting of a signature and a set of axioms. The purpose of the logical theory is to
characterize all and only the grammatical linguistic structures of a natural lan-
guage. The signature declares the non-logical symbols which the grammar writer
may use, and it imposes certain structural conditions on interpretations of the
grammar. Non-logical symbols of this kind of feature logic are sorts, attributes
and relation symbols. The set of sorts is organized in a partial order, which is
called the sort hierarchy. Examples of sorts are sign, word and phrase, and the
HPSG sort hierarchy puts word and phrase below sign. HPSG’s signs must have a
SYNSEM attribute with values of sort synsem, category objects (which are found as
values of the attribute CATEGORY) must have a HEAD attribute with a small set
of possible values while they do not have a SYNSEM attribute, and so on. Typical
HPSG relations are the binary relation member (for stating that some entity is on
a list or in a set) and the ternary relation append, which is often used to state that
the list-value of an attribute is obtained by appending the list-value of a second
attribute to the list-value of a third attribute. The structural restrictions on in-
terpretations that we have described above come from appropriateness conditions
which declare certain attributes (such as SYNSEM) appropriate to certain sorts
(such as sign) and prescribe the possible sort-values of these pairs (e.g., synsem).!
The statements of the logical theory (the axioms) are known to linguists as the
principles of grammar. Their syntax uses the standard boolean logical connectives
(conjunction, disjunction, negation, etc.), existential and universal quantification,
and the attributes, sorts and relation symbols of the signature. The syntactic
component of an HPSG grammar uses these symbols to state principles such as
the HEAD FEATURE PRINCIPLE (the head value of a phrase and its head daughter
are identical), the SUBCATEGORIZATION PRINCIPLE (regulating the discharge of
arguments of a syntactic functor) or the IMMEDIATE DOMINANCE PRINCIPLE
(playing the role of phrase structure rules of generative frameworks). We will not
repeat any of these principles but illustrate HPSG’s typed feature logic with a
brief sketch of a TFL specification of LRS.

2.2 HPSG with an LRS Semantics

In a TFL specification of LRS, two components can be distinguished. First, we
need to specify the syntax of the language of semantic representations, i.e., the
language which we want to use to specify the meaning of linguistic signs. In
previous work on LRS, this has always been Ty2 for compatibility with the se-
mantics literature in linguistics, but many other logical languages are conceivable
candidates without major changes to the overall architecture of LRS. Second, the
combinatoric system must be specified. The combinatorics determines how the re-
strictions on semantic representations provided by syntactic daughters and their

1 Readers more familiar with algebraic specifications might note that sorts here are like their types,
and attributes are like unary term constructors. There are no counterparts of constants in algebraic
signatures. Thanks are due to an anonymous reviewer for pointing this out.
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mode of combination as well as the nature of their syntactic mother determine
the restrictions on the meaning of the phrase. It is this combinatoric system and
the kind of structural information in syntax and semantic representations that it
refers to which form the core of the LRS theory. In principle, any logical language
strong enough to express these principles, and any syntactic theory which com-
prises the relevant syntactic structures can be used to specify a grammar with an
LRS module.

The TFL specification of the syntax of Ty2 is very technical, and we do not
need all of its details in the present context. To provide a general impression of
how it works, Fig. 1 shows a fragment of a signature for Ty2.

ty2
me TYPE {ype
variable NUM-INDEX integer
constant  NUM-INDEX integer
application ~ FUNCTOR me

ARG me
abstraction VAR variable
BODY me
equation ARGl me
ARG2 me
negation ARG me
generalized-quantifier VAR var
RESTR me
SCOPE me
every
some
three
logical-constant  ARG1 me
ARG2 me
disjunction
conjunction
implication

bi-implication

Figure 1
Fragment of the signature for a grammar of Ty2 expressions

The sort ty2 subsumes all other sorts in the hierarchy, as indicated by inden-
tation. Its most important subsort is me (meaningful expression), with maximally
specific subsorts for the logical constructs needed in the language. All expressions
are typed, with the types encoded as values of an attribute TYPE. Variables and
constants bear a natural number as their index, since our semantic representation
language provides a countably infinite set of variables and constants of each type.
For example, the 127th constant of type e is designated const(jo6 . In linguistic
grammars, these constants are usually given more intuitive names. The constant
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constj96 ) might thus be referred to by the symbol john', and consti96 (¢,1)) by
laugh’. Our signature fragment also includes sorts for three generalized quanti-
fiers, every, some and three, which we will need in our linguistic examples. These
generalized quantifiers can of course already be expressed with other basic con-
structions in our syntax for semantic representations, viz. variables, application,
lambda abstraction and equations. Including them explicitly in our syntactic con-
straint language for Ty2 expressions will, however, turn out more than just a
simple convenience when we formulate restrictions on the occurrence of (subsets
of) quantificational expressions within certain structural domains. Further details
of the signature of Ty2 such as the sort symbols for the encoding of integers and
the type system are omitted from Fig. 1.

Of course, the signature alone does not guarantee the well-formedness of the
expressions in the denotation of the grammar. To obtain this, we need a the-
ory of the set of well-formed expressions of Ty2. (1) shows two of the necessary
principles:?

TYPE

(1) a. application — |FUNCTOR TYPE

ouT
ARG TYPE
TYPE  truth

b. equation — |ARG] TYPE
ARG2 TYPE

(1a) requires that in an application, the argument be of a type that the func-
tor can combine with, and the resulting type is determined by the functor. For
example, if the functor is of type (e, t), it takes an argument of type (e) and
yields an expression of type (¢). (1b) says that an equation is of a truth type
(i.e., true or false), and the two arguments of an equation are of the same type.
More restrictions of this kind are needed for all logical connectives, as well as
restrictions which guarantee the finiteness of Ty2 structures and the existence of
a bijection of Ty2 expressions and the Ty2 structures in the denotation of the
TFL specification of Ty2.® The full set of axioms needed in a TFL encoding of
Ty2 can be found in (Penn and Richter, 2004, pp. 426 429). In order to avoid
cumbersome notation, TFL descriptions of Ty2 expressions are typically avoided
in specifications of LRS grammars. Instead it is common practice to write (par-
tial) Ty2 expressions in TFL descriptions. It is important to keep in mind that
this notation actually abbreviates descriptions of Ty2 expressions, and one such
meta-expression may in fact describe an infinite number of Ty2 expressions. This
should become clearer in our examples below.

2 In RSRL, tags are treated as variables, and all variables in grammar principles must be bound by a
quantifier. By convention, if no quantifier binds a tag in a given principle, this tag is understood to
be bound by an existential quantifier taking wide scope over the entire expression.

3 This means that Ty2 expressions are encoded by the grammar in such a way that for each Ty2
expression there is one class of isomorphic structures in the denotation of the grammar such that
these structures correspond to the expression.
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For our comparison with semantics in LTAG the specification of the combi-
natorial system of LRS is even more important than the exact details of a TFL
encoding of Ty2. The main idea here is as follows: Signs refer to various aspects
of their meaning in various feature values. The values of their LRS features re-
strict the meaning contribution to the utterances in which the signs may occur.
Although it is very tempting at the beginning, the Ty2 values of LRS attributes
such as EXCONT, INCONT and PARTS should thus not be understood as describing
separate Ty2 expressions. It is more useful to think of the descriptions of these
feature values in a sign as separate but interacting constraints on the possible
meanings of the utterance to which the sign belongs. Metaphorically speaking,
these restrictions are collected as we go up the syntactic tree until we have col-
lected them all as restrictions on the EXCONT value of the overall utterance. LRS
grammars are written in such a way that the EXCONT value of an utterance is
a Ty2 expression which specifies the meaning of the utterance. When looking at
each utterance in the denotation of an LRS grammar one discovers that in fact
all LRS attributes of all signs in the utterance have values which are components
of this EXCONT value. In other words, the descriptions of these feature values in
the grammar turn out to be restrictions on the EXCONT value of the utterances
predicted by the grammar.

The schematic description of signs in (2) reveals the main distinctions made
in the feature geometry:

[sign
PHONOLOGY phonological structure

i [CATEGORY (local) syntactic structure]]
content
ext-index
SYNSEM LOCAL
(2) CONTENT INDEX [ VAR me

PHI index

i i MAIN  me 1]

[Irs

EXCONT me
INCONT e
PARTS  list(me)

LF

LRS distinguishes between local (lexically oriented) and non-local (combina-
torial) aspects of the semantics of signs. The local aspects can be selected by
syntactic functors and are located under SYNSEM. More precisely, they are under
the attributes VAR and MAIN, which are both located at the traditional place for
semantic representations in HPSG, the CONTENT value.

The attributes which are responsible for building the semantic representa-
tions of phrases from the semantics of their daughters are under a new attribute
LOGICAL-FORM (LF), which is not accessible for selectional restrictions since it
is appropriate to the sort sign. Three combinatorial aspects of the semantic rep-
resentation of a sign are identified: The external content (under EXCONT) is the
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semantic contribution which a sign makes at its highest syntactic projection to
the overall utterance in which it occurs; the internal content (under INCONT) is
that part of the semantic representation of a sign which is within the scope of
any operator the sign combines with; the PARTS list marks those pieces of the
semantic representations connected to words which count as being contributed
to the utterance in which the word occurs.* We observe that every subterm of
the meaning representation of an utterance must be introduced as an element on
the PARTS list of (at least) one word in the utterance.® Conversely, the meaning
representation of an utterance must contain all elements on all PARTS lists of all
words in the utterance. Intuitively speaking, the meaning of an utterance consists
precisely of those sub-expressions which come from the words in it. Nothing can
be added from outside, and nothing gets lost.

The function of the new attributes is best understood by considering the
semantic analysis of a few words in LRS:

(3) a. John:
[PHON  (john)
HEAD  noun

AT suBcaT ()

Ss LOC o,
INDEX VAR [1] john

CONT .

MAIN [0 john’
EXCONT me

LF |INCONT [1] john’

PARTS  ([T] john")

b. laughs:
[PHON  (laughs)
HEAD  wverb
CAT
SS LOC SUBCAT <NP>
CONT MAIN laugh’
EXCONT me
LF |INCONT [2] laugh’([D)
PARTS < laugh’ (@), Iaugh'>

4 Readers familiar with the development of HPSG might recall that Kasper (1997) used attributes
called EcoNT and 1cONT in an analysis of recursive modification which solved certain problems with
Pollard and Sag’s original proposal for analyzing the semantics of modifiers in HPSG. The attribute
names are adapted from Kasper by LRS to acknowledge the inspiration Kasper’s paper gave for
distinguishing between constituent-internal and external content. However, the two approaches
differ significantly in detail, and this is not the place for a comparison.

5 As we will see in Section 5, there are special cases in which at least one of the meaning contributions
of two (or more) words may be identical. In particular, the single sentential negation in negative
concord constructions may come from several n-words and the negative marker in a sentence.
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c. always:
[PHON <alway5>
adv
MOD V[LOC CONT MAIN ]
SUBCAT elist
CONT MAIN always’
EXCONT me
LF |INCONT [5] always'([3])
PARTS  ([5] always'([3]), always')

& [2a] < 3

HEAD
SS LOC

The analysis of proper names such as John (3a) is particularly simple. Since
proper names are analyzed as contributing only a non-logical constant (john') to
the semantic representation, the INDEX VAR value, the MAIN value, the internal
content and their semantic contribution (on PARTS) are all identical. Note that
the four attributes refer to the very same symbol in the denotation of the TFL
specification, as indicated by the tag [1]. The external content of the word John is
not lexically determined. The EXCONT value me (meaningful expression) indicates
that any Ty2 expression is permitted. Only when the word is combined with a
functor will other principles fix the EXCONT value (which will also be john').

Verbs such as laughs are more interesting. Its local MAIN value is laugh’, indi-
cating the lexical meaning of the word. Its internal content is the application of
the predicate laugh’ to a lexically underspecified constant or variable of the ap-
propriate type. Which constant or variable it is will be determined by the subject
NP, whose VAR value, [, contributes the relevant logical argument.® From the
perspective of semantic contributions to the utterance in which it occurs, laughs
provides the application which we already saw as the INCONT value, and the non-
logical constant laugh’.” The PARTS list of laughs does not contain [i], since the
verb does not contribute the relevant expression of type e to the meaning of the
utterance in which it occurs. This expression is contributed by the subject.

The subject NP of laughs is syntactically selected by the verb as the first ele-
ment on its SUBCAT list. The notation ‘NP’, employed here to describe the first ele-
ment on the SUBCAT list of laughs, is a frequent abbreviation in the attribute-value
matrix (AVM) notation of HPSG descriptions. It describes synsem objects with a
saturated (empty) SUBCAT lists and HEAD value noun. Elsewhere we will use sim-
ilar standard abbreviations for verbal synsems (V, VP) and adjunct synsems (A).

The description of the adverb always, (3c), introduces another important type
of constraint on semantic representations, component-of constraints. The analy-

6 The identity requirement between the VAR value of the syntactically selected argument and the
logical argument of laugh’ must in fact be relaxed when we extend the analysis to arguments that
are definite descriptions of type e such as the student, and semantically similar constructions. See
Sailer 2004 for the relevant generalization in terms of a component-of constraint. For our present
purposes, the simpler identity requirement will suffice.

7 For the purposes of the present paper, we ignore the INDEX VAR value of verbs, for which Richter
and Sailer (2004) propose event variables.
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sis of always resembles the analysis of laughs, except that always as an adverb
selects its argument via the MOD attribute instead of a SUBCAT list. The selected
argument, [2a], of the operator always’' is, however, not analyzed as an immediate
argument. Instead the lexical entry requires that be a component of the argu-
ment, [3], of always. If nothing else intervenes and the type of the MAIN value of
the selected argument were appropriate, could be identical to [3]in a given sen-
tence as far as the component-of constraint is concerned. As this example shows,
component-of constraints are used for saying that (i) one expression belongs in an
argument slot, or (ii) is in the scope of another expression. However, we usually
do not know whether the first expression combines with something else before it
fits into the relevant argument slot in (i), or whether we face a relationship of
immediate scope in (ii). Moreover, type clashes might force the first expression to
be combined with something else first before it fits into the alloted slot.

Two things deserve to be pointed out about the lexical entry in (3c): The
typing of the always' operator as a predicate taking a truth value is, of course,
an oversimplification and only meant as an illustration of the guiding ideas.®
Secondly, note that the type of laugh’ ({e,t)) and the subterm requirement of (3c)
suffice to guarantee that laugh’ has to apply to its argument first so as to fit into
the argument slot of always’. Type restrictions of this kind play a very important
role in the use of underspecification in LRS.

Before we can analyze sentences, we need to introduce the most important
LRS principles, the INCONT PRINCIPLE, the EXCONT PRINCIPLE and the LRS
PROJECTION PRINCIPLE. They are listed in (4). For simplicity, we assume binary
branching structures throughout this paper.

(4) a. The INCONT PRINCIPLE:
In each Irs, the INCONT value is an element of the PARTS list and a
component of the EXCONT value.

EXCONT
lrs — INCONT A member([2,[3) A [2] <
PARTS

b. The EXCONT PRINCIPLE:

Clause (a):
In every phrase, the EXCONT value of the non-head daughter is an
element of the non-head daughter’s PARTS list.

EXCONT

phrase — | |NH-DTR LF
PARTS

1 A member ([, ))

Clause (b):

In every utterance, every subexpression of the EXCONT value of the

8 For a real semantic analysis compatible with the present LRS framework, one could follow the
LTAG proposal of Kallmeyer and Romero (2007).

10
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utterance is an element of its PARTS list, and every element of the
utterance’s PARTS list is a subexpression of the EXCONT value.

Uu-sign —

EXCONT
Vi Viz) VBl Vi QLF L’ARTS H A @< A member(d, )> -

(member (3),2)) A @ <)

c. LRS PROJECTION PRINCIPLE:

In each phrase,
1. the EXCONT values of the head and the mother are identical,

phrase — [LF EXCONT }

H-DTR LF EXCONT

2. the INCONT values of the head and the mother are identical,

phrase —

[LF INCONT
|H-DTR LF INCONT

3. the PARTS value contains all and only the elements of the PARTS
values of the daughters.

LF PARTS

phrase — | |H-DTR LF PARTS A append([2}, 3], 1)
NH-DTR LF PARTS

(4a) requires that the part of the meaning of a sign which is outscoped by
everything else (the internal content) is actually contributed by the sign itself
and is a subterm of its external content. The external content is governed by two
principles which have to do with maximal projections. According to ((4b), Clause
a) the maximal projection of a sign (identified as the non-head daughter of an
embedding sign) must be a contributor of its external content. In other words, the
external content must originate from within a maximal projection, it cannot come
from outside. ((4b), Clause b) is a closure principle. Every sign in the language is a
daughter of one unique unembedded sign or utterance. The closure principle says
that the meaning of an utterance (its external content) consists of all and only
those symbols and ways of combining symbols (by application and abstraction)
which are contributed by the signs in the utterance. The projection principle (4c)
makes sure that internal and external contents are identical along syntactic head
projections and the contributions to the semantic representations of all daughters
are collected in the PARTS lists of the mother nodes.

With the lexical entries and the core LRS principles we can already derive
the semantic representation of a simple sentence. The analysis of (5) is shown in
Fig. 2.

(5) John always laughs.

11
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S
EXC [4] always’(laugh’(john’))
INC
PTS ([2),[2al,[5], [Bal, (1))

COWAD

NP VP
EXC EXC
INC INC
PTS ([ john’) PTS (2], [2a], [5), [Bal)
John & B <
ADI___—— ——__ HEAD
A \Y
SS L C HD MOD V:[MAIN ] EXC
EXC INC laugh’ (@)
LF |INC always’([3]) pPTS (2], [2a] laugh’)
PARTS ([5),[5al always’) laughs
& [2a] <
always
Figure 2

LRS analysis of John always laughs

Each word specifies its contribution to the overall meaning of the sentence
(PARTS), the part of its semantics which is outscoped by all signs it combines with
(INCONT), and the overall semantic contribution of its maximal projection (EX-
CONT). The feature percolation mechanism introduced by the LRS PROJECTION
PRINCIPLE identifies INCONT and EXCONT along head projections and collects the
elements of the PARTS lists of the daughters at each phrase. The combination of
the adjunct with a verbal projection induces a number of restrictions: Since each
non-head daughter’s EXCONT must be on its PARTS list (EXCONT PRINCIPLE,
Clause a) and the INCONT must be a component of the EXCONT (INCONT PRIN-
CIPLE), the EXCONT of always must equal the INCONT of always. Moreover, the
EXCONT of always must be within the EXCONT of laughs (EXCONT PRINCIPLE,
Clause b). Next, the INCONT of laughs must be in the scope of always according
to the component-of constraint in the lexical entry of always, (3c). The semantic
argument of laughs, john', is identified by subcategorization, as indicated in the
lexical entry of laughs ((3b), tag [1). The closure condition of the EXCONT PRIN-
CIPLE ((4b), Clause b)) requires that the semantic representation of an utterance
use up all and only the PARTS contributions of all signs, which finally yields the
semantic representation spelled out as the EXCONT description of the S node in
Fig. 2. As the reader may verify, this expression is the only solution of the com-
bined constraints on the semantic representation of the overall sentence. These
constraints come from the lexical entries as well as from syntactic properties of
the sentence.

12
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2.3 Summary: The Architecture

In this section, we showed that LRS can be integrated seamlessly with the logical
architecture of HPSG. There is no distinction between the TFL specification of
syntactic structures and the TFL specification of semantic representations which
carry the truth conditional meaning of the entire structure. Syntactic and semantic
constraints can interact freely. It is an important feature of this architecture that
underspecification is a matter of the TFL level of grammatical descriptions. The
structures in the denotation of the grammar are complete structures, including the
semantic representations. This means that there is no semantic underspecification
in the denotation of the grammar.

It is not necessary for a grammar with an LRS semantics that its constraints
are expressed in the same language as the rest of the grammar. An example of
a system which uses distinct languages is the computational implementation of
LRS in the TRALE system described in Penn and Richter 2004. The Constraint
Language for Lezical Resource Semantics (CLLRS) is a specialized constraint lan-
guage designed to facilitate the notation of the constraints and to eliminate the
technical overhead caused by the TFL encoding of the syntax of Ty2. In CLLRS
the well-formedness of the semantic representations is guaranteed by an indepen-
dently implemented set of well-formedness axioms that the user does not have to
declare or even know (Penn and Richter 2005). Despite the different approaches
in CLLRS and the LRS architecture presented in Subsection 2.2, CLLRS main-
tains the tight connection to syntactic structures. It supports constraints in which
semantic inferences are grounded in syntactic structure, and semantic structure
may trigger syntactic constraints. All properties of LRS relevant in our compar-
ison between LTAG semantics and LRS are preserved in CLLRS. However, the
comparison of LTAG semantics and LRS is more transparent when we can refer
to a single typed feature logic with a uniform model theory which is responsible
for semantic representations and for syntactic structure simultaneously.

3 Lexicalized Tree Adjoining Grammars and Semantic Unification

In contrast to the LRS integration with HPSG using one single TFL, LTAG is
characterized by a modular architecture, where the feature logic is used solely for
semantic computation and nothing else. The basis is a syntactic tree-generating
formalism with a limited generative capacity. The trees from the grammar are
linked to semantic representations that are sets of Ty2 formulas that need to be
put together. The way these formulas are combined in order to obtain the meaning
of natural language expressions involves two further characteristics of the grammar
architecture of LTAG semantics: First, the semantic representations are linked to
feature structure descriptions, which encode 1. the arguments needed to complete
the formulas and 2. the values provided as possible arguments for other formulas.
Depending on the tree combination operations performed in the syntax, feature
value equations are computed between the different feature structure descriptions,
at which point some of the open argument slots in the semantic formulas are
filled. Second, the result of this process is still an underspecified representation,
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Substitution in TAG:

- A

M A
similar to the ones proposed in Hole Semantics (Bos 1995) and Minimal Recursion
Semantics (MRS, Copestake et al. 2005). In order to obtain the final meanings of a

sentence one has to compute the different disambiguations of this representation.
In the next sections we will describe the components of this system.

Adjunction in TAG:

Figure 3
Substitution and adjunction in TAG

3.1 Lexicalized Tree Adjoining Grammars

LTAG (Joshi and Schabes 1997) is a tree-rewriting formalism. An LTAG consists
of a finite set of elementary trees associated with lexical items. From these trees,
larger trees are derived by substitution (replacing a leaf with a new tree) and
adjunction (replacing an internal node with a new tree). The two operations are
depicted in Fig. 3. In case of an adjunction, the new tree, called an auziliary tree,
has a special leaf node, the foot node (marked with an asterisk). LTAG requires
the nodes involved in these operations to be labelled with the same non-terminal
symbols (A in Fig. 3). When adjoining a tree to a node p, in the resulting tree, the
subtree with root p from the old tree is put below the foot node of the auxiliary
tree. Non-auxiliary elementary trees are called initial trees. Each derivation starts
with an initial tree.

The elementary trees of an LTAG represent extended projections of lexical
items and encapsulate all syntactic/semantic arguments of the lexical anchor.
They are minimal in the sense that only the arguments of the anchor are encap-
sulated, all recursion is factored out. These linguistic properties are formulated in
the Condition on Elementary Tree Minimality (CETM) in Frank (2002).

A crucial property of LTAG is its extended domain of locality. The recursive
material that is factored out is put in separate auxiliary trees that can be adjoined.
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sometimes
derived tree: S
—_— 7 derivation tree:
N‘P /VP\ laugh

John ADV VP
| \ np vp
sometimes \%

\ john  sometimes
Figure 4 laughs
TAG derivation for (7)

As a consequence, in the final derived tree, the contribution of an elementary tree
can be separated into different parts that might be far away from each other. For
example, in a long-distance dependency such as (6), the slot for the wh-word and
the verb marry are in the same elementary tree while the trees for wants, said
and think all adjoin to the S node in the middle.

(6) Who does John think Bill said Mary wants to marry?

LTAG derivations are represented by derivation trees that record the way the
elementary trees are put together. A derived tree is the result of carrying out
the substitutions and adjunctions. Each edge in the derivation tree stands for an
adjunction or a substitution. The edges are equipped with addresses of the nodes
where the substitutions/adjunctions take place. The derivation of (7) in Fig. 4
illustrates this: Starting from the elementary tree of laugh, the tree for John is
substituted for the node at position np and sometimes is adjoined at position vp.

(7) John sometimes laughs.

In contrast to the logical foundations underlying HPSG, LTAG has very lim-
ited generative capacity; it belongs to the class of mildly context-sensitive gram-
mar formalisms (Joshi 1985) and only slightly extends the generative capacity
of context-free grammars (CFG). This explains why LTAG has attractive formal
properties; it is polynomially parsable (see among others Schabes and Joshi 1988;
Vijay-Shanker and Weir 1993; Nederhof 1997), tree adjoining languages (TAL)
have desirable closure properties (Vijay-Shanker and Joshi 1985; Vijay-Shanker
1987), there is a pumping lemma for TALs (Vijay-Shanker 1987), and there is
an extension of pushdown-automata that accepts TALs (Vijay-Shanker 1987). In
general, the use of LTAG for natural languages is motivated on the one hand
by the fact that CFGs are not powerful enough to describe all natural language
phenomena (Shieber 1985) and on the other hand by the desire to stay as close
as possible to CFG in terms of complexity and generative capacity.
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3.2 LTAG Semantics with Semantic Unification

In the LTAG semantics approach we consider here (see Kallmeyer and Romero
2007), each elementary tree in the Tree Adjoining Grammar (TAG) is linked to
a pair consisting of a semantic representation and a semantic feature structure
description. These feature structure descriptions are used to compute assignments
for variables in the representations using conjunction and additional equations
introduced depending on the derivation tree.

3.2.1 Semantic Representations and Semantic Feature Structure De-
scriptions As in Kallmeyer and Joshi 2003, we use flat semantic representations
in the style of MRS (Copestake et al. 2005): Semantic representations consist of
a set of labelled Ty2 formulas and a set of scope constraints. A scope constraint
is an expression x > y where x and y are propositional labels or propositional
meta-variables (these correspond roughly to holes in Bos 1995).

The formulas in a semantic representation contain meta-variables — depicted
as boxed Arabic numbers, e.g. [ — of type e (individuals), s (situations) and
(s,t) (propositions).® Each semantic representation is linked to a semantic feature
structure description which can include the meta-variables from the formulas.
Between the descriptions, feature value equations are computed depending on
the derivation tree. From the descriptions and these additional feature equations,
which are interpreted conjunctively, assignments can be inferred for some of the
meta-variables in the semantic representations.

As an example consider the semantic representation and the semantic feature
structure of laughs in Fig. 5. The fact that the meta-variable of the argument
of laugh’ appears in the top (T) feature of the subject NP node position NP
indicates that this argument will be obtained from the semantics of the tree
substituted at the subject node. The label of the laugh” proposition, [;, is linked
to the bottom of the VP node. This signifies that the proposition /; is the minimal
proposition corresponding to this node. If an adverb adjoins at the VP node, [}
will be embedded under that adverb, and the larger proposition [4] will be provided
by the adverb. Note that the variables in the description, e.g., [4] in this example,
need not occur in the semantic representation.

e [+ [ ]
L laugh' @) | | ve l [e ]

Figure 5
Semantic representation and semantic feature structure description of laughs

Since the focus of this paper is on the use of feature logics for computational
semantics, let us say a little more about the semantic feature structure descriptions

9 We take the term “situation” to be more general than “worlds™ worlds are considered to be special
kinds of situations, namely maximally specified situations.
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in LTAG. The feature logic descriptions serve the sole purpose of putting semantic
representations together; they are a kind of glue. In principle, they could be
defined either as partial feature structures with unification or as feature structure
descriptions with conjunctions and equalities. We chose the latter option since
this allows us to use a simple inference mechanism for calculating assignments for
the meta-variables in our semantic representations.

Our semantic feature structures as well as the corresponding terms of the
feature logic are typed. We will call the feature structure types fs-types to dis-
tinguish them from the types of the terms in the semantic representations. The
whole feature structure that goes with an elementary tree is of fs-type sem and
has attributes Np, VP, etc. for all node positions occurring in the elementary trees
of the TAG (finite for each TAG) whose values are of fs-type tb (for “top-bottom”).
These in turn have attributes T and B whose values are of fs-type bindings and
have attributes 1, P, s (for “individual”, “proposition” and “situation”) with values
of fs-types vare (these are the variables of type e from our Ty2 language), var s ;
(the labels of propositional type), and vars (the variables of type s from our Ty2
language) respectively.

The fs-types do not have a hierarchical structure. In other words, there are no
sub-types (no sort hierarchy) as in the feature logic of HPSG (including LRS).°

The intuition behind our typed feature structures is the following: A semantic
feature structure description links individuals, situations and propositions to syn-
tactic positions, i.e., to nodes in the (syntactic) elementary tree. Each node has
a top and a bottom feature structure. If no substitution or adjunction occurs at
a node, top and bottom get identified. Otherwise, they can have different values.

The feature structure descriptions linked to the semantic representations are
simple first order formulas with attributes and with constants for values of atomic
fs-type, similar to those introduced by Johnson (1988, 1990). The main difference
is that our logic is typed, thus we do not need a symbol | for undefined values.
We avoid computing potentially undefined values by typing our feature terms
and defining terms in such a way that attributes are applied only to terms of
appropriate fs-types. The logic we are using is only a fragment of first order logic
since we need neither negation nor disjunction or universal quantification.

We will use fs-variables [0, [1], . . .. Feature structure descriptions will be given
in the usual AVM notation. An example is provided in Fig. 6, where all conjuncts
have a complex fs-term of the form a(u) equated with a simple fs-variable or
fs-constant.

3.2.2 Semantic Composition Semantic composition consists of conjoining fea-
ture structure descriptions while adding further feature value equations. It corre-
sponds to the feature unifications in the syntax in Feature Structure-based TAG
(FTAG, Vijay-Shanker and Joshi 1988) that are performed during substitutions,

10 Actually, one might do without fs-types. Attributes will then denote partial functions and, in the
terms of our feature logic, they might occur in places where they do not make sense because their
value is undefined. In our logic, the typing disallows building such terms.
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Corresponding avm:

Feature structure description: NP [T [1 ﬂ

1(r(xp(@))) = DA

p(r(ve())) = [EA T [P ]

P(p(vP(@)) = b e e ]
[0]

Figure 6
Feature structure description in AVM notation

Case 1: substitution Case 2: adjunction

Figure 7
Feature identifications depending on substitutions and adjunctions

adjunctions and the final top-bottom unifications in the derived tree.

In the derivation tree, elementary trees are replaced by their semantic repre-
sentations plus the corresponding semantic feature structure description. (See the
derivation tree on the left and the structure for computing semantics on the right
in Fig. 8.) We assume that each time a new elementary semantic entry is chosen
from the grammar, it contains fresh instances of labels, individual and situation
variables and meta-variables. This way, the sets of labels and variables occurring
in different nodes of the derivation tree are pairwise disjoint.

The additional feature equations added at substitution or adjunction edges
in the derivation tree are depicted schematically in Fig. 7. They are specified as
follows: For each edge in the derivation tree from +; to o with position p:

e The top feature of position p in v; and the top feature of the root
position in 79, i.e., the features v1.p.T and ~9.r.T are equated (where r is
the root node position),

e and if 75 is an auxiliary tree, then the bottom feature of the foot node of
~v9 and the bottom feature of position p in 1, i.e., the features v1.p.B
and v9.f.B are equated (where f is the position of the foot node in s).

Furthermore, for all v in the derivation tree and for all positions p in 7 such
that there is no edge from ~ to some other tree with position p, the T and B
features of v.p are equated.

As an example consider the analysis of (7): Fig. 8 shows the derivation tree
with the semantic representations and the semantic feature structure descriptions
of the three elementary trees involved in the derivation. The formula john’(z) is in-
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Semantic computation:

Iy : laugh’(@)

derivation tree:

laugh

john  sometimes

Figure 8
Semantic representations and semantic identifications for (7) John sometimes laughs

terpreted as meaning “there is a unique individual John and z is this individual”.!!
Sometimes scopes over a proposition [6] containing at least [7] and contributes a
new proposition [s.

The feature value identifications lead to the identities marked in Fig. 8 with
dotted lines. The top of the subject NP of laughs is identified with the top of the
root NP of John (substitution) and with the bottom of the root of John (final
top-bottom unification). Consequently [ = x. The bottom of the VP in laughs
is identified with the bottom and top of the foot VP of sometimes (adjunction
and final top-bottom unification), yielding [7] = [;. Finally, the top of the VP in
laughs is identified with the top and bottom of the root VP, of sometimes (again,
adjunction and final top-bottom unification), with the result [ = I5.

Equality between fs-terms is reflexive, symmetric and transitive, and it extends
to the different attributes allowed for the fs-type of the term. This permits us
to derive further conjuncts using corresponding inference rules. Conjoining the
different feature descriptions on the derivation tree, the new feature equations
and the further conjuncts one can derive yields a large description 4.

If ¢ is satisfiable, we can continue computing an assignment function from 4.
In order to check for satisfiability, we have to check whether for all fs-constants
c1,c9 with 0 F ¢ = ¢9, ¢1 is indeed equal to cp. Then, from ¢ an assignment func-
tion g can be obtained for some of the meta-variables occurring in the semantic
representations. We assume that the meta-variables are alphabetically ordered.
Then g is defined as follows:

11 This is similar to the treatment of proper nouns in DRT of Kamp and Reyle (1993).

19



Richter and Kallmeyer LRS and LTAG

e for all fs-variables [ such that there is a fs-constant ¢ with § =@ = ¢:
9(@m) = c,

e for all fs-variables such that there is no fs-constant ¢ with § =c
if [72] is the alphabetically first fs-variable such that § - [71] = [#2], then
g9(m) = [l

This assignment is then applied to the semantic representation and the union
of the representations is built. In our example this leads to (8):

(8) ‘ Iy : laugh’(z),l2 : sometimes’ ([8]), I3 : john’(z), 6] > 11 ‘

3.2.3 Disambiguation The semantic representation obtained in the way de-
scribed above is usually underspecified and cannot be interpreted yet. First, ap-
propriate disambiguations must be found. These are assignments for the remain-
ing meta-variables, i.e., functions that assign propositional labels to propositional
meta-variables respecting the scope constraints. The definition of these disam-
biguations roughly corresponds to the possible pluggings in Bos (1995). The dis-
ambiguated representation is then interpreted conjunctively.

(8) has only one disambiguation, [6] — [y, since [6] cannot possibly equal o
(6] must be in the scope of ls) and [6] cannot possibly equal I3 (otherwise there
would be no meta-variable left below [6] to be equated with /1 in order to satisfy
the constraint [6] > [;).

(9) john'(z) A sometimes’(laugh’(z))

3.3 Computational aspects

The computation of the underspecified semantic representation via feature iden-
tification on the derivation tree uses the same mechanisms as ordinary LTAG
parsing in a feature structure-based TAG (FTAG, Vijay-Shanker and Joshi 1988).
The only difference is that the set of possible feature values is not finite in general
(e.g., possible values for features of propositional type are ly,1s,l3,...). However,
in practical applications, the feature value set can always be limited. Then the
complexity of syntactic FTAG parsing (which is O(n%)) and FTAG parsing includ-
ing semantics is the same except for some constant factors. There exists already
an extension of an LTAG parser that takes into consideration semantics, assuming
a syntax-semantics interface very similar to the one presented here. It outputs the
TAG derivation trees and the underspecified semantic representations computed
on these derivation trees (SemConst, Gardent and Parmentier 2005).

The second aspect to consider is the complexity of the disambiguation, i.e., the
computation of the different readings that an underspecified representation yields.
In general, the complexity of disambiguating expressions with scope constraints
of the form = > y is NP-complete (Koller et al., 2001). But the semantic rep-
resentations we actually use are close to so-called normal dominance constraints
(Koller et al., 2003; Fuchss et al., 2004). For this type of constraints an efficient
polynomial solver has been developed.
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Components of the LTAG system

3.4 Summary: The Overall Architecture of LTAG

As already mentioned, in contrast to LRS, LTAG is a very modular system.
The different components and their relations are summarized in Fig. 9. The parts
above the horizontal line are components of the lexicon while the parts below
this line are generated in the course of the derivation. The interface structure
between syntax and semantics is the derivation tree; it determines locally both
the compositions of elementary trees and the equations between feature structure
descriptions.

Let us emphasize once again the difference in the use of feature logics: In
LRS, a powerful feature logic is used to specify the whole grammar. In LTAG, a
simple feature logic (a fragment of first order logic) is used to specify the argument
requirements/contributions of semantic representations and, as we will see later,
also to specify scope boundaries. In LRS the identities between feature values
stemming from the feature value equations of different lexical entries arise from
general principles which of course are also defined using the feature logic. In LTAG
even these equations are not part of the TFL descriptions of the grammar writer.
Rather, they arise from an extra feature identification mechanism defined on the
derivation tree.

4 Expressing Scope Boundaries with Features

In this section we will compare the ways in which the two frameworks model the
scopal behavior of quantificational NPs, adverbs and modal verbs. We focus on the
similarities arising from the use of feature logics to encode scope boundaries, and
we ignore a number of subtle differences in the linguistic theory between LTAG and
LRS grammars. These differences primarily concern assumptions the nature and
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UPPER BOUNDARY
Hlx(studenf'(x) Aol) | Va(professor’ (y) —

)

LOWER BOUNDARY
admire’(z,y)
Figure 10
Depiction of the scope window accounting for the ambiguity in (10)

grammatical characterization of scope boundaries in complex NP constructions
or with propositional attitude verbs. We will be interested in constructions like
those in (10) (13):

(10) Exactly one student admires every professor.

I>V,V>3

(11) Two policemen spy on someone from every city.
YV > 3 > two (among others)

(12) John seems to have visited everybody.
seem > VY,V > seem

(13) Three girls are likely to come.
three > likely, likely > three

As illustrated in the examples (10)—(13), in principle quantificational NPs in
English can scope freely. An analysis of quantifier scope must minimally guarantee
two things: 1) The proposition to which a quantifier attaches must be in the
nuclear scope of the quantifier, and 2) A quantifier cannot scope over the next
higher finite clause.’> One way to model this is to define a scope window delimited
by a maximal scope boundary and a minimal scope boundary for a quantifier. This
idea is illustrated in Fig. 10. A dotted edge from z (higher node) to y (lower node)
signifies that y is in the scope of (i.e., is a component of) z. Both LTAG and LRS
specify such scope windows for quantifiers. We will now outline the two analyses.

4.1 Specifying a Scope Window for Quantifiers: LTAG

Kallmeyer and Romero (2007) assume that each verb specifies a scope window for
attaching quantifiers. The lower boundary is the label of the proposition intro-
duced by the verb. The upper boundary is a meta-variable. The boundaries are
encoded by features MAXS and MINS (corresponding to UPPER BOUNDARY and

12 The linguistic theory of scope in LRS is in fact constructed to accommodate the assumption that in
certain syntactic environments a limited class of quantifiers may scope out of the finite clause where
they syntactically originate. We will henceforth ignore this genuinely linguistic difference from the
theory formulated in LTAG.
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LTAG analysis of (14) Everybody laughs

LOWER BOUNDARY in Fig. 10). Since these two features represent a property of

the verb that is not linked to a specific node position, they are defined as global
features.'?

(14) Everybody laughs.

Let us go through the analysis of (14), shown in Fig. 11. The lexical entry of
laugh (the root node of the derivation tree in Fig. 11) provides an upper boundary
MAXS = [2] and a lower boundary MINS = [; delimiting the scope window for
any quantifier attaching to laughs. These boundaries mean that a quantifier that
attaches to laughs has to minimally scope over the laugh’ proposition (label [;),
and it cannot scope higher than [2].1*

The semantics of everybody has two parts: The generalized quantifier every’*®
with its restriction [ and its nuclear scope [5], and a proposition person’(z) that
is part of the restriction (constraint [4 > [3). The quantifier looks for the global
MAXS and MINS features of the verb it attaches to in order to find the upper and
lower boundaries for its nuclear scope. In the semantic representation, the nuclear

13 Global features are grouped under a feature ar.oBarL that is linked to the elementary tree as a whole
and not to single node positions. Each semantic representation can look into the global features of
the mother node in the derivation tree (by putting a request on its root node position or its foot
node position) or into the global features of a daughter (by putting a request on the node position
to which the daughter attaches).

14 Tn this simple case, there are no further constraints on the maxs value [2], i.e., this upper limit does
not have any effect. However, an attitude verb embedding laugh as in (15) would embed the laugh
MAXs feature in its propositional argument and thereby prevent the quantifiers occurring in the
embedded clause from taking scope outside of the embedded clause.

(15) Mary fears that everybody laughs.

Note that existential quantifiers such as someone always allow for a referential wide scope
reading, even when being embedded under an attitude verb. In LTAG we assume that this reading
is not a proper scope reading but it is obtained by a different mechanism.

15 Note that in LTAG, generalized quantifiers are treated as constants of a specific type in the
underlying Ty2 logic. For a generalized quantifier ¢, g(x, p1,p2) can be read as ¢(Az.p1, Az.p2). In
this sense, ¢ is a constant of type ({e, (s, 1)), {{e, (s,1)), (s,t))). In particular, generalized quantifiers
are not treated as syncategorematic in LTAG and cannot be identified as a special class of symbols.
This is different in LRS where a sort hierarchy of subsorts of generalized-quantifier is employed in
formulating principles of (immediate) scope constraints and quantifier islands (see Section 4.2 for
simple principles referring to the relevant sorts).
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Figure 12
Analysis of NP three girls in LTAG

scope [8 is situated between the variables [6] and [7 (constraints [6] > [5], 5] > [7]). In
order to equate these with the MAXs and MINS values of the verb, a request for
these features is put on the root node (position NP) of everybody. The mechanism
of adding feature equations for global features guarantees that this request gets
identified with the global feature of laughs.

The feature identifications (indicated by dotted lines) lead to the constraints
> [Bl,[5] > I;. With the assignments following from the feature identifications
(0 — «,6] — [2,[d — [1), we obtain the semantic representation (16):

I1 : laugh’(z),

ly : every/(z,[4),[5]), I3 : person’(x)
>,

[4> 15,2 > E,BE > L

(16)

There is one possible disambiguation consistent with the scope constraints,
namely [2] — [y, [4] — I3,[5] — [;. This leads to the semantics (17):

(17) every’(z, person’(z), laugh’(z))

In order to illustrate the way quantifiers interact with other scope taking
operators, let us consider the analysis of (13) Three girls are likely to come. The
combination of the determiner and the noun into the NP three girls is shown in
Fig. 12. The generalized quantifier three carries a request for the global features
MAXS (variable [8]) and MINS (variable [9]) of the tree it attaches to, which is the
girls tree. This tree, in turn, identifies its own global features MAXS (variable [4])
and MINs (variable [5]) with the global features obtained by requesting the global
features of the verb. This means that the request for the global MAXS and MINS
of the verb at the root of the girls tree ultimately concerns the upper and lower
scope boundaries of three. The p feature provided by girls (label l4) provides the
restriction of three.
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The syntactic analysis of (13) in LTAG is shown in Fig. 13. The raising pred-
icate be likely is analyzed like adverbs, using a VP auxiliary tree that adjoins to
the verbal spine of the infinitive.

S
S /\
xp o AP yp----- VP
/\ Selt /\ ‘
Det N AV VP* v
| | PN |
three  girls are likely to come
derived tree:
/S\ derivation tree:
NP VP to_come
PN
three girls \% VP np vp
. \
are likely Y three_girls likely
to come

Figure 13
Syntactic analysis of (13) Three girls are likely to come in LTAG

The semantic analysis on the derivation tree is shown in Fig. 14. (The node
positions VP and VP, stand for the root and foot node positions of the likely
tree.) The scope properties of the raising verb do not depend on the MAXS MINS
scope window. Instead, its scope depends on its attachment site. It is in a sense
inserted between the top and the bottom part of the VP node to which it adjoins,
embedding the proposition it finds at the bottom (here [1) and providing a new
proposition (label [3) at the top. This new proposition is then passed up the
verbal spine. This analysis is motivated by the empirical observation that in cases
where more than one operator attaches to the verbal spine, the order on the spine
determines the scope order:

(18) John tries to seem to be a nice boy.
tries > seem > be a nice boy, *seem > tries > be a nice boy

The scope constraints for the raising verb interact with the quantifier scope
window: The larger proposition on the verbal spine, 2], is below the MAXS bound-
ary (constraint > [2), and the proposition /; contained in the scope of the
raising verb is the MINS boundary. As a consequence, likely also scopes within the
quantifier scope window.

From the additional feature equations in Fig. 14, we obtain the assignments
— x,[2] — 15,161 — [3],[7] — [1,[8] — [1, which lead to the semantic representation
in (19):
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This underspecified representation has the two disambiguations and scope
orders in (20):

(20) a. Bl— 13,05 — lo,B] — 1,4 — Iy
I3 : three' (x, 1y : girl'(2), 1o : likely'(I; : come/(z)))

b. - l27 - l37 - l17 - l4'
Iy : likely’(I3 : three'(z, 14 : girl'(x), 11 : come/(z)))

4.2 Specifying a Scope Window for Quantifiers: LRS

To analyze the sentences (13) and (14) in LRS, we need to introduce the lexical
entries for the quantificational expressions and a new principle, the SEMANTICS
PrINCIPLE. The SEMANTICS PRINCIPLE of LRS consists of construction-specific
clauses which put restrictions on the possible ways in which the semantic repre-
sentations of syntactic daughters can be combined. Let us start with the lexical
entry of everybody:
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(21) everybody:
[PHON  (everybody)

HEAD noun

CAT SUBCAT ()

SS LOC
CONT

EXCONT me
INCONT [2] person’(z)
PARTS

LF

&Lpil<a&kr<a&rzap

INDEX VAR T
MAIN every(z, a, 3)

(w, 2], Zalperson’, [ every(z, a, §))| |

LRS and LTAG

From a syntactic point of view, everybody is a quantified noun phrase like every
girl and many boys in my class. The combination of quantified noun phrases with

a verbal projection is subject to a

restriction by the SEMANTICS PRINCIPLE,

given in (22). We introduce two clauses of this fundamental principle.'® The first
one, (22a), applies when a quantificational determiner combines with a nominal

Y

projection; the second, (22b), governs the combination of a quantified noun phrase

with a verbal projection.

(22) SEMANTICS PRINCIPLE:

In each headed-phrase, the following conditions hold:

a. if the non-head is a quantificational determiner then its INCONT value
is of the form gen-quantifier(x, p,v), the INCONT value of the head is
a component of p, and the INCONT value of the non-head daughter is
identical with the EXCONT value of the head daughter,

NH-DTR SS LOC |:

H-DTR LF [

NH-DTR LF [INCONT

EXCONT
INCONT

CAT HEAD det
CONT MAIN gen-quantifier

|

gen-quantifier
RESTR

N 21 < [3]

b. if the non-head is a quantified NP with an EXCONT value of the form
gen-quantifier (x, p,v), then the INCONT value of the head is a compo-

nent of v,

16 The SEmanTICS PrINCIPLE for LRS was first formulated with more sub-clauses in (Richter and

Sailer, 2001, p. 283), where it still included

the LLRS principles in (4a)—(4c). Additional clauses of an

extended SEmMaNTICS PRINCIPLE introduce combinatoric restrictions on head-marker phrases,
different kinds of head-adjunct phrases, and head-filler phrases. In general, these clauses contribute
semantic restrictions on phrases obtained by certain modes of syntactic combination and often take
the semantic types or syntactic and semantic class of the immediate daughters of the phrase into

account.
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HEAD  noun
SUBCAT ()

gen-quantifier
SCOPE

SS LOC CAT |:

Vi | [NE-DTR

H-DTR LF INCONT (2
Iz [ 2]
A Bl <[

LF EXCONT [

According to (22a), when a quantificational determiner is combined with a
nominal head, the internal content of the nominal goes into the restrictor of the
generalized quantifier. Note that this is a true ‘component-of’ constraint. There
might be more in the restrictor of the generalized quantifier than just the internal
content of the nominal projection. This is the case if the nominal is modified
by a restrictive relative clause or by an intersective adjectival modifier. Their
representations will also be part of the restrictor of the generalized quantifier
(with the possible exception of certain quantificational operators).

In LRS, the EXCONT value of the utterance is the upper scope boundary
while the INCONT value of the syntactic head which selects a quantifier is the
lower boundary for scope. This can be seen in the analysis of (14), which is
depicted in Fig. 15. The upper boundary is obtained through the interaction of
1) the LRS PROJECTION PRINCIPLE, (4c), stating that the PARTS list of a phrase
contains all elements on the PARTS lists of its daughters, and 2) the EXCONT
PRINCIPLE, (4b), which states that a) the PARTS list of each non-head contains its
own EXCONT, and b) in an utterance, everything on the PARTS list is a component
of the EXCONT. This leads to the constraint [4] <[6] in Fig. 15, among others. The
lower boundary is obtained from the SEMANTICS PRINCIPLE, (22b), which states
that if the non-head of a headed phrase is a quantifier, then the INCONT of the
head is a component of its nuclear scope. This yields [1] <1 8 in Fig. 15.

S
EXC [6] every(z, person’(x), laugh’(x))
INC
prs (I, [Tal, (2], [2a], [2b], 1))
&m< B &<

COMP__— ———_ HEAD

NP VP
EXC [4] every(z, «, 3) EXC [6]
INC person’ () INC laugh’(x)
pPTs (2], [2a] person’,[2b] z, [4]) pTs ([, [1a) laugh”)
&p <a
Everybody laughs

Summary of relevant subterm constraints: 21 <1 o, [ <1 3, [4] <[6]
Figure 15
LRS analysis of (14) Everybody laughs

The situation becomes more complex when several scope taking elements in-
teract, as in the ambiguous sentence (13), repeated in (23).
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(23) Three girls are likely to come.

In order to analyze this sentence, we first need to explain how LRS handles
the combination of a quantificational determiner with a count noun. (24a) and
(24b) introduce the relevant parts of the lexical entries for three and girls:

(24) a. three:

[PHON <three>

HEAD det
CAT
SUBCAT ()
SS LOC
INDEX VAR [4alr
co
MAIN [4] three(z, «, 3)

EXCONT me
LF |INCONT three(z, a, 3)

I PARTS  ([4], [1al)
Lraa&r<f

b. girls:
[pHON  {girls)

HEAD noun

CAT lSUBCAT <DETP >
SS LOC

INDEX VAR
CONT o
MAIN  girl

B} t
EXCONT [gen quan zﬁer}

VAR
INCONT [2) girl' ([Eal)
PARTS < girl' ({4a)), gir|'>

LF

Using the first clause of the SEMANTICS PRINCIPLE, we obtain the structure
shown in Fig. 16. The nominal head of the noun phrase gains access to the variable
x introduced by the determiner by selecting the determiner as the first element
on the SUBCAT list and identifying the argument of the predicate girl” with the
variable found under INDEX VAR ([al). A comparison of the semantic representa-
tion of the quantified noun phrase three girls at the NP node with the semantic
representation of the quantifier everybody (21) immediately reveals their parallel
structure.

Before we can analyze (23) we need to provide the semantics of the predica-
tive adjective likely. According to (25), it embeds its own INCONT value in the
argument « of the operator likely’. The INCONT value is assumed to be raised from
its verbal complement. Since the INCONT of the complement is not part of the
selected synsem structure of the complement, this INCONT raising cannot be lexi-
cally specified in the lexical entry of likely. Following Sailer (2006) we assume that
a general INC RAISING PRINCIPLE takes care of INCONT raising and identifies
the INCONT values of the appropriate predicates and their complements.
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NP
EXC [4] three(x,, d)
INC
ps  ([],[4al,[3], 3a))
&pBlay
COWAD
Det N
EXC EXC
INC [4] three(x,, d) INC [3] girl’(z)
ps (4], [4a] z) ps (3] [3a] girl’)
three girls

Figure 16
LRS analysis of three girls

(25) likely:
[PHON  (likely)
HEAD  adj

CAT susear { oo CAT HEAD wverb
SS LOC
CONT MAIN

CONT [MAIN likely']
EXCONT me
LF |INCONT
PARTS ([T, [2] likely'(at), [2al)

&m<a&in<

The semantic constraints of the lexical entry of come are parallel to the lex-
ical entry of laugh (3b); the auxiliaries to and are are analyzed as INC raising
predicates similar to likely but without contributing any constant to the semantic
representations.

Fig. 17 shows the structure of (23) which follows from the lexical entries and
the LRS principles above. The figure repeats only those subterm constraints which
are essential to see the treatment of scope windows and the way the two readings
of the sentence are derived.

The restrictions in Fig. 17 (in combination with the grammar of well-formed
expressions of Ty2 presented in Section 2.2) leaves two possibilities for the EXCONT
value [5]:

(26) a. 5] = three(x, girl’(z), likely’(come’(x)))
b. [ = likely’(three(x, girl’(x), come/(z)))

The scope window for the operators in (23) is delineated by the internal con-
tent of come, [1], and the external content of the complete utterance, [5]. By defini-
tion, the internal content of each sign s is outscoped by all scope-taking elements
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S
EXC
INC [1] come’(x)
ps ({4, [4al, (3], (3, (2, [2a], (1], [Ta))

&m<o
COWAD
NP VP
EXC [4] three(z, 7, d) INC
NG [3] girl’ (alr) {PS <,,,>}
Ls ([41, [4al, [3], 3a]) HEWMP

bmay v AP
Three girls

EXC EXC
INC INC
ps () ps  (12],[2al, (1], [al)
are HEAD _— "~ COMP
A VP
EXC EXC
INC INC [1] comé’(z)
ps ([1,[2] Iikely’(a),}] ps ([, [Tal) ]
&< a to come
likely

Figure 17
LRS analysis of Three girls are likely to come

of the signs with which s combines. The equality of the INCONT of the sentence
with the INCONT of come is mediated by the fact that o, likely and are are an-
alyzed as INCONT raisers which identify their own INCONT with the INCONT of
their VP (or AP) argument. Two subterm constraints interact with the internal
content of come. The predicative adjective likely outscopes [I] according to its lex-
ical restrictions ([ < «). Clause b of the SEMANTICS PRINCIPLE, (22), adds the
restriction that [ be in the nuclear scope of the quantifier three girls ([ < 0). In
essence, these component constraints demand that both the quantifier and likely’
outscope come'(x), their relative scope is not determined. Adding the fact that
girl'(x) must be in the restrictor of three girls (3 < ), the two expressions in (26)
are the only Ty2 terms satisfying all restrictions of the grammar.*”

For a complete understanding of underspecification in the HPSG-LRS archi-
tecture, it is important to consider the (exhaustive) models in the denotation
of the grammar. These models contain two structures for the sentence (23), one
for each reading. The two structures are syntactically identical, but one has the
EXCONT value in (26a) whereas the other has the EXCONT value in (26b). This
means that there is no underspecification at the level of semantic representations.
Underspecification is only a matter of the TFL specification of the grammar.'®

17 Note that the reading in (26b) implies [5] = [2], which is not the case in reading (26a).
18 Underspecification is also a crucial ingredient of the CLLRS implementation. Computation with
CLLRS can thus be viewed as computation using underspecification techniques.
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4.3 Summary: Features and Scope Constraints

The two quantifier scope analyses in LTAG and LRS illustrate two points. The
first concerns the comparison of LTAG and LRS. As we have shown, both ap-
proaches use a feature architecture for a quantifier scope window to capture the
freedom of quantifier scope within certain syntactically defined domains. LTAG
semantics and LRS use a level of underspecification involving ‘component-of’-
constraints, although the status of the underspecification layer of grammar is
different in the two frameworks. In finite sentences, there is a clear correspon-
dence between LTAG’s attributes MAXS and MINS and the attributes EXCONT
and INCONT in LRS. The striking similarity between the two analyses shows that,
despite the mathematical differences between the frameworks, central insights can
be modelled in parallel. Interesting differences are expected to emerge in detailed
analyses of subtle linguistic facts and possibly in the computational behavior of
implementations of LTAG semantics and CLLRS.'® An area in which differences
between the two architectures matter will be discussed in the next section. As for
computational differences, it is still too early to draw conclusions.

The second point concerns a contrast between feature logic-based computa-
tional semantics and the tradition of logical form semantics as an extension of
generative syntax in the style of Heim and Kratzer (1998). As we have demon-
strated, the use of feature logics with feature value identifications in combination
with underspecification techniques allows us to avoid syntactic movement oper-
ations such as quantifier raising for the representation of scope. In other words,
features are not only used to establish predicate-argument relations but they also
serve to determine scope boundaries. This is possible because of the mechanisms
for percolating feature values on the derived tree provided in LRS and LTAG and,
in addition, because of LTAG’s extended domain of locality.

5 Consequences of Encoding Semantic Formulas in a Feature Logic:
The Case of Negative Concord

Negative concord can be characterized as a type of construction in which the
occurrence of several negation-bearing elements such as negative quantifiers (no
one, nothing) and negative particles (not) lead to an interpretation with only one
negation. The analysis of negative concord in Polish in LTAG and LRS described
in this section highlights differences in the theories’ implementation of underspec-
ification techniques. They are of particular interest to our discussion because they
go along with the different functions of the feature logics in the two frameworks.
Both LTAG and LRS use component-of constraints, but they are used in different
ways in the two grammar architectures. In LTAG, these constraints link under-
specified Ty2 terms that are augmented with holes and labels of Hole Semantics,
while in LRS, they belong to the descriptions of fully specified Ty2 terms. The
possibility in LRS of referring to the same Ty2 expressions multiple times and at
different points in the constituent structure of a sentence permits an interesting

19 See the remarks in Section 2.3 on CLLLLRS.
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treatment of negative concord which cannot be mirrored directly in LTAG.

5.1 Negative Concord in Polish
Polish is a classical negative concord language. The basic facts of sentential nega-
tion and negative concord in Polish are illustrated in (27)—(29):

(27) Janek nie pomaga ojcu.
Janek NM helps  father
‘Janek doesn’t help his father.’

(28) a. Janek nie pomaga nikomu.
Janek NM helps  nobody
‘Janek doesn’t help anybody.’

b. *Janek pomaga nikomu.

(29) Nikt  nie przyszedtl.
nobody NM came
‘Nobody came.’

The verbal prefix nie is obligatory for expressing sentential negation, and it can
co-occur with any number of n-words (such as nikt, ‘nobody/anybody’) without
ever leading to a double negation reading. As a consequence, (29) expresses only
one logical sentential negation, although both the negation prefix nie on the verb
and the n-word nikt can carry logical negation alone in other contexts. We will
now present analyses in LTAG and LRS of negative concord in Polish, taking
sentence (29) as our example.

5.2 Concord Phenomena in LRS

LRS takes advantage of the fact that its specifications of semantic representations
are descriptions of logical expressions which can, in principle, mention the same
parts of the expressions several times. (30) shows the relevant part of the lexical
entries of nikt (nobody) and nie przyszedt which we need in the analysis of (29).
Following Kup$¢ (2000) we assume that nie is a verbal prefix and forms a morpho-
logical unit with the verb. The lexical entry of nikt (nobody) in (30a) is similar to
the relevant parts of English everybody in (21). However, as a negative quantifier
it also introduces a negation into the semantic representation. This negation re-
ceives a special treatment. According to (30a), the negation component, [4], of nikt
is not a component of its external content, which looks like an existential quanti-
fier. Instead, the condition [5] <« § only demands that the existential quantifier in
the external content be in the scope of the negation.
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(30) a. nikt (nobody):
[word
PHON (nikt)
INDEX VAR T
SS LOC CONT
MAIN [5] some(z, 7y, d)
Irs
EXCONT [5] some(z,~,0)
INCONT [3] person’([3blx)
PARTS  ([3],[3alperson’,[3b], 43, [5])

&pap&pay&r<s y&rad

LF

b. nie przyszedt (NM came):
[word
PHON (nie przyszed})

SS LOC
CONT MAIN come’

CAT SUBCAT <[Loc CONT INDEX VAR ]>1

lrs

EXCONT [0]

INCONT [1] come’([3b])
PARTS ([, [Talcomée’, 2], )

&m<a &<

LF

In contrast to the specifications for nikt, the verb nie przyszedt realizes the
negation within its external content. The lexical entry (30b) does this by stating
that the negation, [2], must be a subterm of the external content, [0].

Without additional principles these lexical specifications are not sufficient to
guarantee the only available reading of the sentence (29), i.e., the reading with
a single sentential negation. First of all, nothing enforces the obligatory presence
of the negation prefix with the finite verb in the presence of nikt. Second, a
double negation reading may result from not identifying the negation contributed
by nikt and by the verb. To overcome these shortcomings, Richter and Sailer
(2004) introduce two language-specific principles which determine the behavior
of negative concord in Polish. We restate these two principles informally in (31a)

and (31b).

(31) a. The NEG CRITERION:
For every finite verb, if there is a negation in the external content of
the verb that has scope over the verb’s MAIN value, then the negation
must be an element of the verb’s PARTS list.

b. The NEGATION COMPLEXITY CONSTRAINT:
For each sign, there may be at most one negation which is a component
of the external content and has the MAIN value as its component.
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According to the NEG CRITERION for Polish a (finite) verb in the scope of
negation must contribute negation itself. The NEGATION COMPLEXITY CON-
STRAINT limits to one the number of negations taking scope over a MAIN value
within the projection domain of an external content. With these additional re-
strictions in place, we can now derive the meaning of (29) in LRS. Fig. 18 shows
that both nikt and the verb nie przyszedt introduce descriptions of negations ([4]
and [2], respectively). The constraints on negative concord in Polish conspire to
force the negations contributed by the two words to be the same in the overall
logical representation [0] of the sentence (2] = [ (= [0)). Moreover, the negation
must outscope the existential quantifier introduced by nikt due to the lexical scope
constraint [5] < 8 of nikt. The restriction [1] < § comes from the second clause of
the SEMANTICS PRINCIPLE, (22).

S
EXCONT [0] = some(z, person’(x), come’(z))
INCONT
PARTS  ([1],[1al,[2], 3], [3al, [3b], [4], [5])
&m«ad
/\
NP \Y%
EXCONT [5] some(z,, d) EXCONT [0]
INCONT person’ ([3blx) INCONT come’ ([3blz)
PARTS  ([3],[3alperson’,[3b], [4]-(, [5]) PARTS ([, [Talcome’, 2]-«)
&plap&pay &m<aa &<
Nikt nie przyszedt

Figure 18
LRS analysis of (29) Nikt nie przyszedt (Nobody came)

5.3 Concord Phenomena in LTAG

An LRS-style analysis of negative concord is not possible in LTAG. Recall that
the feature logic is not used to encode the Ty2 formulas as is the case in LRS.
In LTAG, the formulas in the semantic representations are considered different
objects, i.e., different subformulas of the final semantic representations we obtain
after disambiguating the underspecified representation. Therefore, each negation
in the interpretation corresponds to exactly one negated term introduced in the
semantic representations from the lexicon.

Since the interpretation of (29) contains only one negation, there can be only
one negation in the lexical entries involved in the derivation. As there can be sev-
eral n-words in a sentence without resulting in multiple negation and the presence
of the negative marker nie is obligatory, nie necessarily introduces the negation.
The n-word nikt can then be analyzed as an existential quantifier that requires
1. the presence of a negation and 2. being in the scope of this negation.

An LTAG analysis along these lines is sketched in Fig. 19. It resembles in
many respects the NPT analysis proposed in Lichte and Kallmeyer (2006). Let us
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explain its different aspects.

Verbs have two more global features, besides MAXS and MINS that were already
introduced in Section 4: a feature NEG indicating the presence of a negation and
a feature N-SCOPE containing the scope of this negation. If the verb is negated
(as it is the case in Fig. 19), the global NEG should be set to yes, otherwise it
should be set to no. (In the latter case, the feature N-SCOPE is irrelevant.) To
achieve this, we introduce an additional local feature NEG on the V node. At the
bottom, this feature has the value no. If no negative marker adjoins, this will
be identified with the top (variable [3]) and passed from there to the global NEG.
The negative marker adjoins to the V node and switches this local NEG feature to
yes by specifying NEG= yes at the top of its root node. This yes gets identified
with [3] because of the adjunction. In addition, the negation nie identifies its scope
(variable [9]) with the global N-SCOPE of the verb it attaches to (here @ = [9]) and
scopes over the proposition of the verb (the MINS feature, constraint [9] > [10]).

The n-word is an existential quantifier. It requires the global feature NEG of
the verb it attaches to to be yes thereby checking the presence of a negation.
Furthermore, its maximal scope boundary (constraint [7] > [6]) is not the MAXS
value of the verb but the N-SCOPE value (identification [i] = [7]). This ensures that
the existential quantifier is in the scope of the negation.

S
T
NP VP
wp T v |
S
D
nikt
nie  V* przyszedt
[ MAXS i
GLOBAL n-scopr [1]
MINS la
NEG

l2 : come’(2])

> 12 NP |:GLOBAL [I ]:|

np

I3 : some’(x,[5],[6]), l4 : person’(z)
Bl > I, [@ > [6], [6] > [8]

GLOBAL [1 x]
N-SCOPE
NP | GLOBAL | MINS (8]
NEG yes

Figure 19
LTAG analysis of (29) Nikt nie przyszedt

rhmﬂq

B [NRG HO]

v

11 : 9]
[o] > [10]

N-scoPE [9] ]

GLOBAL
|:M]NS

T [NEG yes}

v

As a result, building the union of the semantic representations and applying
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the assignment obtained from the feature identification, we obtain the semantic
representation in (32) for Fig. 19:

ly : comé/(z), I3 : some’(z,[5),[6)), Iy : person’(z), {1 : -

B @0 @> L. O>6 @ b, 0> b

5.4 Summary: Underspecification in LRS and in LTAG

The analysis of negative concord demonstrates that the two frameworks differ
substantially in their treatment of underspecification: 1. LRS employs partial de-
scriptions of fully specified models, whereas LTAG generates underspecified repre-
sentations in the style of Bos (1995) that require the definition of a disambiguation
(a “plugging” in the terminology of Bos). 2. LRS constraints contain descriptions
of Ty2 terms rather than Ty2 terms. Therefore, unlike in LTAG, two descriptions
can denote the same formula. Because of this, the analysis of negative concord in
LRS described above can introduce several negations at the TFL description level
that get identified in the models of the constraint system. This is not possible in
LTAG, where the feature logic only mediates between pieces of underspecified Ty2
expressions. As a result, LTAG is more limited than LRS. On the other hand, the
way semantic representations are defined in LTAG guarantees that they almost
correspond to normal dominance constraints, which are known to be polynomially
parsable (see Althaus et al. 2003).

The difference in the use of underspecification techniques reflects the more
general difference between the two types of mathematical systems: In a generative
linear rewriting system such as LTAG the elements of the grammar are objects
(here: elementary trees paired with sets of Ty2 terms), and copying or erasing
is disallowed during derivations. By contrast, in a purely description-based for-
malism such as HPSG token identities between different components of linguistic
structures are natural and frequently employed.

6 Feature Logic-Based Semantic Computation and Compositionality

At first sight, feature logic-based computational semantics systems such as LTAG
and LRS do not seem compatible with a notion of compositionality. Clearly, in
these frameworks the derived trees do not determine the meaning of a phrase
in such a way that it is the result of applying the meaning of one daughter to
the meaning of another (in binary branching structures). In order to show that
these systems are still compositional, we have to identify a different structure
that determines syntax and semantics. In this section we will sketch some ideas
for LTAG concerning this question.

The key to answering the question about the compositionality of LTAG seman-
tics is the fact that LTAG is a mildly context-sensitive grammar: The derivation
process (i.e., the process of syntactic combination) can be described by a context-
free structure, the derivation tree. In this section we will demonstrate that this
context-free structure also specifies the process of semantic combination in a way
that corresponds to Hodges’ (2001) definition of a compositional semantics.
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6.1 TAG as a Linear Context-free Rewriting System

TAGs are mildly context-sensitive; they belong to the class of linear context-free
rewriting systems (LCFRS, Weir (1988)). Consequently, they have an underlying
context-free backbone  the derivation trees that denotes the trees that can
be derived. In this section we will outline how to define a context-free grammar
describing the derivation trees. We can then define syntactic and semantic denota-
tions for this grammar: The syntactic denotations are the derived trees while the
semantic denotations are the resulting semantic representations plus the feature
structure descriptions one obtains from the conjunction of the different descrip-
tions involved and the equations arising from the substitutions and adjunctions.

An LCFRS consists of

e a generalized context-free grammar (GCFG) generating terms in a term
algebra that correspond, in our case, to the derivation trees,

e the (syntactic) denotations of these terms (the derived trees), and

e functions specifying how to compute the strings they yield.

In the following, we will ignore the strings produced by the terms of the
GCFG. Instead, we will focus on defining the semantic denotations of the terms.

6.1.1 The Generalized Context-free Grammar A Generalized Context-free
Grammar (GCFG) is a context-free grammar that generates terms. It consists of

e disjoint alphabets N and F', the nonterminals and the function symbols,
e a start symbol S € N, and

e a finite set of productions P of the form A — f(A;,...,A,) where
n>0,feFand A Ay,..., A, € N.

A GCFG derives a set of terms in the following way:

e A= f()if A— f() is a production.

e A= f(ty,...,t,) if there is a production A — f(Ay,...,A,) and
A; =t for 1 < i <n.

The idea of the GCFG specifying the derivations of a TAG is as follows: The
GCFG productions specify possible adjunctions and substitutions for each elemen-
tary tree. The elementary trees are the nonterminal symbols of the GCFG. The set
of terms one can derive from some elementary ~ specifies all the derivation trees
with root symbol . In particular, the y-productions specify the different possibil-
ities for the daughters of « in the derivation tree, i.e., the different combinations
of adjunctions and substitutions possible for «v. More concretely, the productions
have the form v — fy.p,  p. (V15 -+, Yn) With v,71,..., ¥, being elementary trees

38



Richter and Kallmeyer LRS and LTAG

and pq, ..., p, being node addresses in «y. This production indicates that v1,..., v,
can be attached (by substitution or adjunction) to v at node addresses p1, ..., px.

Consider for example the TAG in Fig. 20 with the corresponding GCFG
that characterizes the derivation trees.? With this grammar, for (33) we ob-
tain the derivation tree and corresponding term tree in (34).2! (The term itself
15 foy:1,2,22(fa; (), f:c(f80)), fam ())- Interpreted as a bracketed tree, this gives the
second tree in (34).)

al/s\

a; NP Qm NP NP VP B VP

| | v NP
John Mary | sometimes VP34
loves
Corresponding GCFG:

a; — fa,; () no subst./adj. to «;

am — fanm () no subst./adj. to am

B8 — fs() no subst./adj. to 8

B — f3:.(8) adjunction of § to the root of 8

o — foyi1,22(Q5, am) substitutions of a; and a,, at addr. 1 and 22 resp. in o

(
i — fopi1,22(j, )
ap — fal:1,22(am,aj)
ap — fal:1,22(am,am)
o — foy:1,2,22(0, B,am)  subst./adj. of o, B and am, at addr. 1, 2 and 22 resp. in o
ap — fal:1,2,22(aj,ﬁ, Oéj)
ap — fa1:1,2,22(am,ﬂ7 OC])
ap — fal:1,2,22(am7ﬁ7 am)
Figure 20
Sample LTAG and corresponding GCFG

(33) John sometimes sometimes loves Mary

ay Jau1,2,22
(34) Qj B am faj fﬁ:e fam

|
B I3

The general construction of the GCFG G for a given TAG is as follows:

e The nonterminal symbols of G are the elementary trees.

e For each elementary v without OA constraints®® and without
substitution nodes: there is a zero arity function f, and a production

’Y—>fv()-

20 Here, we use Gorn addresses for the positions of the nodes: The root has the address € and the jth
child of a node with address p has address p - j.

21 We are aware that (33) is not really an English sentence. But for the examples in this section, we
try to keep our grammar as small as possible and thus provide only one VP modifier. This is why
we chose this odd example.

22 OA stands for “obligatory adjunction”. TAG allows one to specify for each node whether adjunction
at that node is obligatory or not. If it is obligatory, the node is said to have an OA constraint.
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e For each « and positions pq,...,p, in v comprising all OA nodes and all
substitution nodes and ~1,...,7, that can be adjoined/substituted at
positions p1,...,p, respectively: There is a n-ary function f,.,, ., and

a production v — fy.p pn (Y15 -+ 7n)

6.1.2 The syntactic denotation The term trees denote derived trees in the
same way as derivation trees determine derived trees:

e For all productions of the form v — £,(): [fy()]syn :== -

e For all productions of the form v — fy.p, 5. (71, 7):
Hf’y:pl,...pn (tlu cee utn)]]syn = ’)’[Ph [[tl]]syn] cee [pn7 [[tn]]syn]-23

For our sample LTAG we obtain:

ﬂfaj Olsyn = o [fam Olsyn = am ﬂfﬂ()]]syn =p
(35) [[fﬁ:e(X)]]syn = B, [[X]]syn]

IIfalzl,22(X7 Y)]]syn - al[la HX]]syn][227 [[Y]]Syn]

[[fal:1,2,22(X7 Ya Z)]]syn = Ozl[l, [[X]]syn”Q’ [[Y]]Sy'n] [22? [[Z]]Syn]

The syntactic denotation of the term tree (34) for (33) is then (36):

(36) [[fazil,l??(faj ()7 f,@:ﬁ(f,@())? fam ())]]syn = al[lv aj] [2? 5[6? 5“ [227 Oém]

The expression o1, o](2, Sle, £]][22, auy| in (36) denotes the derived tree one
obtains by starting with «; (the likes tree), substituting the node at position 1 for
a tree t1, adjoining a tree t9 at position 2 and substituting the node at position
22 for a tree t3 where t1,19,t3 are as follows: ¢; is the tree a; of John without
any further adjunctions or substitutions, ts is the tree au, of Mary without any
further adjunctions or substitutions, and t2 (B[, 5]) can be obtained by taking
the sometimes tree § and adjoining to its root (position €) again the sometimes
tree (.

6.2 Semantic Denotation of the GCFG Terms
The crucial question now is whether the GCFG productions also specify semantic
composition. In the following we will show that this is the case.

Let o be a function assigning to each elementary tree a pair consisting of a
semantic representation and a feature structure description. The function o for
our sample grammar is shown in Fig. 21.

We assume that each time a syntactic category (an elementary tree ) occurs
in a term, o assigns a fresh instance of o(y) (i.e., an instance with fresh labels,
variables and meta-variables).

23 y[p,7'] is defined as follows: if v/ is (derived from) an initial tree and the node at position p in v is a
substitution node, then y[p,~’] is the tree one obtains by substituting «’ into v at node position p.
If v/ is (derived from) an auxiliary tree and the node at position p in + is an internal node, then
v[p,~'] is the tree one obtains by adjoining 7’ to v at node position p. Otherwise v[p,~’] is
undefined. (Note that the undefined case cannot happen here due to the construction of the GCFG.)
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)= o b
o(am) = (e Bar) = [ 00| -

_1 T [1 H
o) = (o be) = [0 @m) | . |2 [ & )
E3E ]]
2 B [P 11}
Lt
. ’ € |B [P lg]
l2 : sometimes’([6] |
o(B) = (o8, 0s) == ( & times'(&) | o . ]}} >
L

Figure 21
Function o for LTAG from Fig. 20

Now we have to define the semantic functions corresponding to the f, , i.e.,
the semantic denotations of the terms in our term algebra.?* In order to compute
the semantics of a node in the term tree, we need to know a) the unions of the
semantic representations from the subtrees, b) the feature structure descriptions
computed from the different subtrees, and c) the top fs-variables of the feature
structure descriptions of the daughters. For a feature structure description 9§ linked
to the semantic representation of an elementary tree, let top(d) be the unique
top variable. (E.g., in Fig. 21, top(da,;) = [0}, top(da,,) = [@...) We then define
our semantic denotations as triples (7, (5fy,top(57)> where the three components
correspond to a)—c) above.

For a pair (o,d) let @ be the result of applying to o the meta-assignments
following from J.

Let us first illustrate the idea of the semantic denotations looking at some
terms from our sample grammar.

(37) [fa; Olsem = (Tay, 0, top(6a;)) with
0a, = Ja; NM{T(p(top(da,))) = B(p(top(da,))) |p position in a;}

This means that the semantic denotation of the tree o; with no other trees
attaching to it consists of the top variable of the feature structure description
da, (third component), the description d,, conjoined with top-bottom equations
for all nodes (second component), and the semantic representation obtained from
applying the assignment arising from J,, and the new equations to oq,. The
denotations for f,,, () and fg() look similar.

24 For simplicity we do not consider global features (an extension to global features is straightforward).
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(38) [fp:e(X)]sem = (opUox,d  top(dg)) where [X]sem = (ox,0x,topx)
with
O (5ﬁ ANOx
AT(e(top(d))) = T(e(topx)) A B(e(top(dp))) = B(fx (topx))
N (p(top(ds))) = B(p(top(9s))) |p # €, p position in B}
fx gives the foot node position of the tree + such that the term X has
the form f, (...).

For terms denoting adjunctions or substitutions, things are more complex:
The new description is the conjunction of the daughter descriptions plus ad-
ditional equations corresponding to the adjunctions/substitutions and the final
top-bottom identifications. In (38) these new equations identify the top of the
adjunction site (address €) in § with the top of the root of the adjoined tree,
and the bottom of the adjunction site (address €) in # with the bottom of the
foot node of the adjoined tree. Furthermore, for all positions in 3 other than the
adjunction site, top and bottom are identified. The new semantic representation
is of course the union of the representations from the daughter denotations after
application of the assignment computed from the new description.

The general definition of the semantic denotation is as follows:

e For all productions of the form v — f,(): Take a fresh instance (o, d,)

of o ().
Hf’y()]]sem = (U_»y, o ,top((5 )> with
&, = oy N{T(p(top(d,))) = B(p(top(dy))) | p position in v}

e For all productions of the form v — fy.p, 5. (71, ... ,7m): Without loss of
generality let pi1,...,pr (0 < k < n) be the substitution node positions
among the p1,...py.

Take a fresh instance (o.,d5) of o(v).

Uviprrpn (X1, oo, Xo)]sem == (05 Uox, U---Uox,, 0, top(dy)) with
O 57 /\5)(1 6Xn
i 1T(Pz(t0p(5 ))) = T(e(topx;))
Nizk+1 B(pi(top(d,))) = B(fx,(topx;))
AT (p(top(éy))) = B(p(top(d+))) |p & {p1;--.,pn},

p position in 7}

Let us go back to the example (33) John sometimes sometimes loves Mary.
The term describing its derivation was fo,.1,2.20(fo; (), f8:e(f8()); fam ())- The com-
putation of the semantic denotation of this term is shown in Fig. 22.

We have shown that for each LTAG G, a GCFG can be defined that generates
a term algebra describing the structural analyses of the strings generated by G in
the sense of having syntactic denotations that are the derived trees yielding these
strings. For this term algebra, there are
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[30)sem = {0, 65, 0) with
oh ‘ I3 : sometimes’ ([9)), [9] > [10]

5y = e(a(e(@)) = s Ap(r(2(@) =
N (e(@) = B(e(@D) A T(@) =

[fo:c(fs()]sem = <O’§,5§/,> with

R(2(0)

o ‘ I : sometimes’([6]), I3 : sometimes’([8)), [6] > [7], 8] > o
57 = p(e(@) =LAP(TE)) =

NS5

AT (e(E)) = 1((IT) A B(e(E)) = B(2(ET)

AT(2(1) = B(2([E)

Hfaj ()]]sem = <0'aj76:1j7|§|> with

5, = @)=«
A1(e([@)) = B(e([@))
Hfam ()]]sem = <U‘1m7 6:1m7> with
Oayy = mary’ (y)
0o, = 1B(e(@)) =y
AT(e()) = B(e(@)
[far:12,22(fa; O f8:(£80), fam O))]sem = (UQL,(;QL',) with
John (2), mary’ y), l1 : love' (z,y),
Oa, = l2 : sometimes’([6]), I3 : sometimes’([a]),
6> 1, B> 1
5 = GO@)) =BA(E@)) =

Ap(T(2([)) =BIAP(B(2()) =11

NS NOZ NG,

AT(e([@) = T(1([)

Ar(e(@) = 1(22(1@))

T(2([@) = T(e(®) Ar(2([@) = r(2(E)
T(e(@) = B(e(@) A T(21([&)) = B(21(@)

Figure 22
Computation of the semantic denotation for (33) John sometimes sometimes loves Mary
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(i) a function b giving the semantic denotations of atomic expressions f()
in the term algebra (b(f()) := [f()]sem),

(ii) and rules r; specifying for each function (syntactic rule) f in the term
algebra how to compute [f(71,...,7)]sem from [vi]sem, - - - [7n]sem-

The relationship between the term algebra generated by the GCFG and the
semantic denotation given by (i) and (ii) directly corresponds to a property of
meaningful terms in a term algebra which Hodges establishes as one of four equiv-
alent ways to characterize a compositional semantics (Hodges, 2001, p. 12, Theo-
rem 4 (b)). Hodges defines a grammar as a set of expressions that can be obtained
from atomic expressions by combining them according to a set of syntactic rules.
The admissible syntactic combinations are captured by means of a grammatical
term algebra, where a term t is grammatical if its value is defined and ¢ is assigned
a structural analysis. In our case, the GCFG generates all grammatical terms of
the LTAG G. (i) and (ii) above determine the semantic denotations for each term.
As a result, each term is p-meaningful in the sense of Hodges’” Theorem 4, and
LTAG semantics fulfills the requirements of a compositional semantics.?’

6.3 Summary: LTAG and Compositionality

As we have shown, since LTAG belongs to the class of linear context-free rewriting
systems, it is possible to define a term algebra describing the syntactic composition
(the substitutions and adjunctions) such that the semantics of a term f(¢1,...,%,)
depends only on f and the semantics of the subterms ¢1,...,t,. In this sense,
LTAG semantics is compositional.

For LRS, it is less obvious whether compositionality can be shown. We still
need to identify the relevant structures that determine syntax and semantics.
A starting point might be to look for some kind of functor-argument structure,
similar to LTAG derivation trees. We leave this issue for further research.

7 Conclusion

We presented and compared two approaches to computational semantics, LRS
and LTAG semantics. They are formulated in considerably different grammar
frameworks but agree on the use of feature logics as a central mechanism in the
specification of dependencies between the meaning of syntactic constituents and
their components. This idea sets them apart from most of the current seman-
tic theories of natural languages, which use the lambda calculus for specifying
semantic composition.

Beyond their use of feature logic in semantic composition, we can identify a
number of additional common characteristics of LTAG semantics and LRS: They
both 1. use a Ty2 language for semantics; 2. allow underspecification (scope con-
straints, >, in LTAG semantics; component-of constraints, <1, in LRS); 3. use

25 Hodges (2001) proposes two alternative characterizations of a compositional semantics. The one we
use here is the stronger, more restricted version, which we consider the more interesting notion of
compositionality for linguistics.

44



Richter and Kallmeyer LRS and LTAG

logical descriptions for semantic computation, including the identification of the
arguments of logical functors; 4. use the feature logics for specifying the upper and
lower scope boundaries of quantificational operators; 5. are designed for compu-
tational applications. Due to these similarities, the analyses of several empirical
phenomena and certain generalizations about the nature of semantic composi-
tion in natural languages can be formulated in almost identical ways in the two
theories. Among these we focussed on the treatment of quantifier scope, and the
mechanisms for identifying semantic arguments using attribute values rather than
functional application with the lambda calculus.

7.1 Differences between LRS and LTAG

LRS structures are specified by means of a typed feature logic that supports
the specification of all aspects of semantic composition. In fact, beyond seman-
tic composition the feature logic can even take over the task of specifying the
syntax of the semantic representation language, Ty2. This ‘all-in-one’ strategy is
particularly attractive in combination with a grammar framework such as HPSG,
because it makes it possible to investigate the syntax-semantics interface with
a uniform model theory that applies to the syntactic structures of natural lan-
guages as well as to the semantic representations that are associated with them.
From an abstract point of view, the intuitive function of LRS constraints on the
meaning of utterances is 1. to specify the meaning contributions of words to the
utterances in which they occur, and 2. to govern the way in which a particular
mode of syntactic combination restricts the possibilities of putting the meaning
contributions of lexical elements together.

In contrast to LRS in HPSG, LTAG is a modularly organized system with
mathematically clearly separated subsystems. The syntactic framework is a tree-
generating grammar. The elementary trees of the TAG system are linked to un-
derspecified semantic representations that are augmented with feature logical ex-
pressions. The underspecification techniques that are applied to the semantic rep-
resentations come from Hole Semantics (Bos 1995). A feature logic extension of
the underspecified representations is responsible for the treatment of predicate-
argument relationships and the scope of quantificational operators. Semantic com-
putation adds feature value equations to the lexical specifications; these feature
value equations are triggered by syntactic operations in the derivation of trees.
The semantic representation which results from the syntactic derivation is an un-
derspecified representation that awaits further disambiguation. The disambigua-
tion procedure then leads to the interpretation(s) of a sentence in terms of sets of
fully specified logical formulas. The disambiguation step can be viewed as another
modular extension of the overall architecture and is performed according to the
techniques of Hole Semantics.

Both LRS and LTAG semantics use feature logics to express predicate-ar-
gument relations and also to treat scope boundaries. However, from a technical
perspective they do this in completely different ways. LRS as a whole is formulated
in an expressive feature logic. Every element in an HPSG grammar with LRS is

45



Richter and Kallmeyer LRS and LTAG

a logical description.?® Linguists call these logical statements the ‘grammar prin-
ciples’. The linguistic expressions that are the subject of linguistic theorizing are
perceived as configurations of entities licensed by the totality of logical statements
in the grammar. In particular, the Ty2 terms that indicate the real world-meaning
of linguistic expressions are also among the structures licensed by the grammar.
We can say that they are in the denotation of the set of feature logical state-
ments that constitute the grammar. The feature logic of LTAG semantics, on the
other hand, is simply a restricted first order logic that serves solely to compute
underspecified semantic representations. In this architecture the feature logic has
nothing to do with the semantic representations linguists are interested in when
they want to know the meaning of an utterance. Therefore the models of the
feature structure descriptions never play a role in the LTAG architecture.

This difference is related to a much more general difference between Head-
driven Phrase Structure Grammar and Tree Adjoining Grammar. HPSG takes
a model theoretic view on natural languages. It sees the task of linguists in the
logical specification of the well-formed expressions of a natural language with
a uniform typed feature logic for all modules of grammar. To make this a fea-
sible enterprise, the feature logic must be very flexible and expressive, because
the kinds of principles linguists might want to express and the kinds of struc-
tures they might want to characterize cannot be anticipated. The starting point
of LTAG is quite different. LTAG belongs to the class of mildly context-sensitive
grammar formalisms, which is a class of formal systems with attractive computa-
tional properties for parsing. The entire architecture of the semantic framework
in LTAG is guided by the desire to uphold its mildly context-sensitive nature. As
a consequence, the feature logic extension of the core formalism is kept as weak
as possible.

A key aspect of mildly context-sensitive grammars is that they are defined in
a way as to guarantee the existence of an underlying context-free structure that
uniquely determines both syntactic and semantic composition. The existence of
such a context-free structure that links syntax and semantics justifies the claim
that LTAG semantics is compositional. In HPSG a corresponding context-free
structure might exist for some grammars or even for a particular class of HPSG
grammars with LRS, but its existence is not guaranteed by the linguistic frame-
work or the TFL formalism itself. It is the responsibility of the grammar writer to
make sure that structures in the denotation of his grammar meet these or similar
conditions.

The difference in the use of underspecification in LTAG semantics and in LRS
that we discussed in this paper goes in the same direction. LRS employs par-
tial descriptions of fully specified models. It follows immediately that two Ty2
term descriptions in grammatical constraints can denote the same formula in the
model of an utterance in the denotation of the grammar. LTAG generates under-
specified representations consisting of (pairwise distinct) sub-formulas linked by

26 Apart from the signature, which the linguist has to declare before writing the principles of
grammar. See Section 2.1 for a short explanation.
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scope constraints. If a type-identical formula is mentioned twice in grammatical
descriptions, the two occurrences of the formula are necessarily distinct tokens.
As distinct tokens they will stay distinct throughout all semantic computations
during the derivation of a sentence. As first-class citizens of the grammar archi-
tecture, the underspecified representations of LTAG semantics also require the
explicit definition of a disambiguation procedure.

The heavily parsing-oriented aspect of its overall architecture makes LTAG
ultimately less flexible than LRS. Semantic concord cannot be the consequence
of (partially) identifying semantic representations of sub-constituents in larger
syntactic units. What we get in return are, once more, desirable computational
properties: LTAG’s semantic representations and the structures that the scope
constraints impose on them guarantee that the constraints on underspecified rep-
resentations resulting from semantic computation are just a slight extension of
normal dominance constraints, which are known to be polynomially parsable. One
of the goals of research in LTAG semantics is to show that its extension of nor-
mal dominance constraints still stays within the realm of polynomially parsable
systems.

7.2 General Properties of Feature Logic-based Semantic Computation
Despite the architectural differences, the two frameworks for computational se-
mantics share several important characteristics. We believe that these common
features are general properties of frameworks with feature logic-based semantic
computation. These frameworks can be distinguished in two respects from the
influential frameworks in the immediate tradition of generative syntax such as
Heim and Kratzer 1998:

First, they avoid functional application as the main method of semantic com-
position, which also means that they do not obligatorily pair up syntactic rules
and semantic translation rules. One immediate consequence of not using func-
tional application and similar operations as the mode of semantic composition is
that the feature logic-based frameworks do not have to appeal to type shifting
the semantics of lexical (or even phrasal) elements either, which is necessary in
other theories in order to allow for all necessary functional applications in the
course of semantic composition.?” Similarly, type raising to the worst case is an
artefact of the lambda calculus-based systems which is needed to be able to treat
all elements of a given syntactic category in the process of semantic composition
the same way, even though the basic semantic types of some lexical classes within
a given syntactic category could in principle be much simpler. A famous example
is the type raising of proper names to quantifiers to obtain a uniform type for all
nominal phrases. The feature logic-based systems will always analyze every lexical
element with the simplest available typing that is compatible with the empirically

27 The families of relations called argument raising and value raising in the Flexible Montague
Grammar of Hendriks (1993) are one possible implementation of the technique of type shifting. In a
lexicalized version Flexible Montague Grammar is also compatible with HPSG (Sailer 2003), which
makes it possible to compare LRS and a semantics using type shifting operations within one
grammar framework; see Richter (2004a) for details.
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observed semantic behavior of the element.

Second, we saw that feature logic constraints permit a straightforward and
flexible specification of scope boundaries. In particular, the use of feature logics
in combination with underspecification avoids the introduction of otherwise unmo-
tivated syntactic movement operations such as a tree-configurational mechanism
of quantifier raising (‘QR’). Consequently, our syntax is very surface-oriented;
syntactic structure is assumed only for those units which can be argued for on
syntactic grounds. Postulating a level of logical form (often called LF in the
literature) to provide an additional layer of syntactic structure for computing
the semantics which potentially introduces many empty categories is superfluous.
Computational implementations may thus focus on syntactic representations that
are known to be tractable more efficiently instead of having to deal with an in-
convenient structural overhead with opaque properties, which, moreover, might
change dramatically as the semantic theory develops.

It is interesting to note that the use of a standard semantic representation
language such as Ty2 in our two frameworks is closely related to the use of fea-
ture logics in the combinatorics. Expressions of Ty2 become available as concrete
structures due to the existence of independent mechanisms for percolating feature
values on the derived syntax tree. In LTAG, the extended domain of locality of the
elementary trees provides additional support for a direct specification of semantic
representations in a standard higher-order logic.

The large and increasingly important research area of syntactic and semantic
licensing requirements is an empirical domain in which a mathematically precise
theory of features and feature values provides a firm basis for expressing elegant
generalizations. Such contextual factors keep gaining ground in computational
linguistics, where they appear in the form of collocation conditions, and they
are also of interest in computational pragmatics. A typical syntactic example
of a contextual licensing condition is the LTAG analysis of negative concord of
Section 5.3; a related LTAG analysis of NPI (negative polarity item) licensing was
proposed by Lichte and Kallmeyer (2006). Similarly, Richter and Soehn (2006)
propose a theory of NPI licensing in HPSG that combines an LRS semantics with
elements of a theory of idiomatic expressions. This theory of idioms was originally
presented by Soehn (2006), who built on previous HPSG work on idioms that
had produced a general architecture of a grammar module for the description of
various kinds of collocations. Feature logic-based theories of context conditions
in semantic representations of the type that we see in the semantic composition
mechanisms of LRS and LTAG semantics may thus be viewed as a natural variant
and new branch of feature logic-based theories of contextual licensing. In the
course of these developments, semantic composition may finally become much
more similar to other linguistic mechanisms than was assumed when it was set
apart from other modules of grammar by exceptional composition mechanisms.

LTAG semantics as well as LRS have emphasized computational considera-
tions of grammar design from the start. HPSG has always figured prominently
in grammar implementation efforts; LRS has been implemented as the CLLRS
module of the TRALE grammar development system (Penn and Richter 2004,
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2005). However, unlike in our discussion of LTAG semantics, in which we have
paid attention to many computational aspects, we largely ignored computational
issues in LRS. The reason was that appreciating the relationship between CLLRS
and LRS presupposes a much more detailed study of the model theory of LRS
than is appropriate in the present context. The starting point of an efficient LRS
implementation is the investigation of the intended models of an LRS grammar,
and a thorough understanding of the interaction of the LRS constraints with syn-
tactic constraints. On the basis of the models of the logical theory of LRS, CLLRS
provides a separate constraint language specifically designed to reason over the in-
tended class of models. Giving up the generality of a feature logic such as RSRL,
CLLRS offers new constraint primitives such as component-of constraints and
contribution constraints to support precisely those kinds of statements that are
prominent in LRS principles. Since CLLRS can be defined as an extension of a
standard feature logic, with which it may share meta-variables, the tight inte-
gration of syntax and semantics remains possible. The computational efficiency
of the resulting system depends on the constraint handling system of CLLRS
and its resolution procedures for underspecified descriptions of expressions of the
higher-order logic. In current research, optimizing the computational behavior of
CLLRS in response to practical experiences with implemented CLLRS grammars
is an important issue.?

There exist several LTAG parsers and a large coverage grammar for English
(XTAG Research Group 2001). However, this grammar does not include a seman-
tics yet. More recently the Metagrammar (MG) tool developed in Nancy (Crabbé
and Duchier 2004) was augmented by functions for the compact specification of a
semantic module in a TAG. Gardent and Parmentier (2005) presented a parser for
processing syntax and semantics which builds on the grammar format supported
by the MG tool.

7.3 Open Questions

An obvious open question is whether HPSG with LRS is a compositional seman-
tics. In Section 6 we sketched a non-trivial notion of compositionality for LTAG
semantics which crucially relied on an underlying context-free structure linking
the derived trees of the TAG component to underspecified semantic representa-
tions. For LRS, we still need to identify the relevant structures that determine
a compositional relationship between the syntactic structures and the semantics.
However, the fact that such structures exist in a closely related framework such
as LTAG semantics indicates that finding them might not be as difficult as a first
look at the LRS architecture might suggest.

Another interesting topic for further research is the problem of a more exact
specification of the relationship between the feature logic attributes for semantic
representations in LTAG and LRS. In the present paper, we focused on how the use
of semantic feature values in the two systems leads to systems with very similar
overall functions. Pursuing the technical details of the two systems further, it

28 For some more remarks on the relationship between LRS and CLLLLRS, see Section 2.3 above.
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might even be possible to identify translation procedures from one framework to
the other. The possibility of translating semantic analyses between two grammars
implemented in different frameworks could be a very interesting application for
computational grammar development.

As we emphasized throughout this paper, the limited generative capacity of
the LTAG formalism is desirable because it guarantees a satisfactory computa-
tional behavior of LTAG grammars in the general case. It is not very surprising
that this convenience comes at a price. The heavy restrictions on the expressivity
of the framework occasionally cause problems: Some natural language phenom-
ena cannot be described within traditional TAG. Most TAG extensions that have
been proposed to remedy these problems involve the factoring of elementary trees
into multicomponent sets (Weir, 1988; Rambow, 1994; Kallmeyer, 2005). This
means that the lexical entries are no longer just single trees; they become sets
of trees. If one of these lexical tree sets is used in a derivation step, then all of
its elements must be added in this derivation step by substitution or adjunction.
If the TAG framework is to reach a better empirical coverage in syntax and in
semantics, extending the present syntax-semantics interface to these new TAG
variants is an important issue for future research. For example, recent extensions
of LTAG to multicomponent sets lead to greater success in the description of word
order variability, and this extension in syntactic coverage leads to new questions
at the syntax-semantics interface. One of them is the problem of capturing rela-
tions between word order and meaning in languages such as German that require
a multicomponent extension of LTAG. First ideas on these topics are presented in
Kallmeyer and Romero (2006). The connection of LTAG semantics to LRS might
also be useful here, since the treatment of free word order languages has received
much attention in HPSG.

We hope that our comparison of LRS and LTAG semantics will contribute
to an increasing and fruitful interaction between the research communities from
which the two theories originate. The comparison highlighted some important
successful features that the two theories have in common. Due to the significant
architectural differences between the two systems, comparing them also improved
our understanding of those properties which distinguish both of them as feature
logic-based approaches to semantic composition from the current alternative the-
ories of the syntax-semantics interface. At the same time, the differences between
LRS and LTAG semantics, in particular the differences in the motivation behind
their major design decisions, are substantial enough to make one of the systems
occasionally more successful in some tasks than the other. It is again the common
core of the two systems that can be useful in transfering successful solutions in
one system to the other for their mutual benefit.
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