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1 RSRL

1 Definition. Var is a countably infinite set of symbols.

2 Definition. Σ is a signature iff

Σ is a septuple 〈G,v,S,A,F ,R,AR〉,
〈G,v〉 is a finite partial order,

S =

{
σ ∈ G

∣∣∣∣∣for each σ′ ∈ G,
if σ′ v σ then σ = σ′

}
,

A is a set,

F is a partial function from the Cartesian product of G and A to G, and

for each σ1 ∈ G, for each σ2 ∈ G and for each α ∈ A,

if F〈σ1, α〉 is defined and σ2 v σ1

then F〈σ2, α〉 is defined and F〈σ2, α〉 v F〈σ1, α〉,

R is a finite set, and

AR is a total function from R to IN+.

Suppose S is a set. Throughout this paper we write S as an abbreviation for S ∪ S∗.

3 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, I is a Σ interpretation iff

I is a quadruple 〈U, S,A,R〉,
U is a set of objects,

S is a total function from U to S,
A is a total function from A to the set of partial functions from U to U ,

for each α ∈ A and each u ∈ U ,

if A(α)(u) is defined

then F〈S(u), α〉 is defined, and S(A(α)(u)) v F〈S(u), α〉, and

for each α ∈ A and each u ∈ U ,

if F〈S(u), α〉 is defined then A(α)(u) is defined,

R is a total function from R to the powerset of U
∗
, and

for each ρ ∈ R, R(ρ) ⊆ U
AR(ρ)

.

4 Definition. 〈Chain,vc〉 is the smallest partial order such that
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Chain = {chain, echain, nechain},
echain vc chain, nechain vc chain.

5 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉,

Ĝ = G ∪ Chain ∪ {metatop},
v̂ = v ∪ vc ∪

{
〈σ,metatop〉

∣∣∣σ ∈ Ĝ
}
,1

Ŝ = S ∪ {echain, nechain}, and
Â = A∪ {†, .}.

6 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I = 〈U, S,A,R〉,

Ŝ is the total function from U to Ŝ such that

for each u ∈ U , Ŝ(u) = S(u),

for each u1 ∈ U , . . . , for each un ∈ U ,

Ŝ(〈u1, . . . , un〉) =
{

echain if n = 0,
nechain if n > 0

, and

Â is the partial function from Â to the set of partial functions from U to U such that

for each α ∈ A, Â(α) = A(α), and

Â(†) is the total function from U+ to U such that for each 〈u0, . . . , un〉 ∈ U+,

Â(†)(〈u0, . . . , un〉) = u0, and

Â(.) is the total function from U+ to U∗ such that for each 〈u0, . . . , un〉 ∈ U+,

Â(.)(〈u0, . . . , un〉) = 〈u1, . . . , un〉.

7 Definition. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉,

AssI = U
Var

is the set of variable assignments in I.

8 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, T Σ is the smallest set
such that

:∈ T Σ,

for each v ∈ Var, v ∈ T Σ, and

for each α ∈ Â and each τ ∈ T Σ, τα ∈ T Σ.

1Note that
〈
Ĝ, v̂

〉
is a finite partial order.
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9 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I = 〈U, S,A,R〉, for each ass ∈ Ass I , T

ass
I is the total function from T Σ to the set of partial

functions from U to U such that for each u ∈ U ,

T ass
I (: )(u) is defined and T ass

I (: )(u) = u,

for each v ∈ Var, T ass
I (v)(u) is defined and T ass

I (v)(u) = ass(v),

for each τ ∈ T Σ, for each α ∈ Â,

T ass
I (τα)(u) is defined

iff T ass
I (τ)(u) is defined and Â(α)(T ass

I (τ)(u)) is defined, and

if T ass
I (τα)(u) is defined

then T ass
I (τα)(u) = Â(α)(T ass

I (τ)(u)).

10 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, DΣ is the smallest set
such that

for each σ ∈ Ĝ, for each τ ∈ T Σ, τ∼σ ∈ DΣ,

for each τ1 ∈ T Σ, for each τ2 ∈ T Σ, τ1≈τ2 ∈ DΣ,

for each ρ ∈ R, for each x1 ∈ Var, . . . , for each xAR(ρ) ∈ Var, ρ(x1, . . . , xAR(ρ)) ∈ DΣ,

for each x ∈ Var, for each δ ∈ DΣ, ∃x δ ∈ DΣ,

for each x ∈ Var, for each δ ∈ DΣ, ∀x δ ∈ DΣ,

for each δ ∈ DΣ, ¬δ ∈ DΣ,

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, [δ1 ∧ δ2] ∈ DΣ,

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, [δ1 ∨ δ2] ∈ DΣ,

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, [δ1 → δ2] ∈ DΣ, and

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, [δ1 ↔ δ2] ∈ DΣ.

11 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉,

FV (: ) = ∅,
for each v ∈ Var, FV (v) = {v},
for each τ ∈ T Σ, for each α ∈ Â, FV (τα) = FV (τ),

for each τ ∈ T Σ, for each σ ∈ Ĝ, FV (τ ∼ σ) = FV (τ),

for each τ1, τ2 ∈ T Σ, FV (τ1 ≈ τ2) = FV (τ1) ∪ FV (τ2),

for each ρ ∈ R, for each x1, . . . , xAR(ρ) ∈ Var, FV (ρ(x1, . . . , xAR(ρ))) = {x1, . . . , xAR(ρ)},
for each δ ∈ DΣ, for each v ∈ Var, FV (∃v δ) = FV (δ)\{v},
for each δ ∈ DΣ, for each v ∈ Var, FV (∀v δ) = FV (δ)\{v},
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for each δ ∈ DΣ, FV (¬δ) = FV (δ),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, FV (δ1 ∧ δ2) = FV (δ1) ∪ FV (δ2),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, FV (δ1 ∨ δ2) = FV (δ1) ∪ FV (δ2),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, FV (δ1 → δ2) = FV (δ1) ∪ FV (δ2), and

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, FV (δ1 ↔ δ2) = FV (δ1) ∪ FV (δ2).

12 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I = 〈U, S,A,R〉, and for each u ∈ U ,

Cou
I=

u′ ∈ U

∣∣∣∣∣∣∣∣∣
for some ass ∈ Ass I ,
for some π ∈ A∗,
T ass
I (:π)(u) is defined, and

u′ = T ass
I (:π)(u)

.

We call Cou
I the set of components of u in I.

13 Definition. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, for each
ass ∈ Ass I , for each v ∈ Var, for each w ∈ Var, for each u ∈ U ,

assu
v
(w) =

{
u if v = w
ass(w) otherwise.

14 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I = 〈U, S,A,R〉, for each ass ∈ AssI , D

ass
I is the total function from DΣ to the powerset of

U such that

for each τ ∈ T Σ, for each σ ∈ Ĝ,

Dass
I (τ ∼ σ) =

{
u ∈ U

∣∣∣∣∣T ass
I (τ)(u) is defined, and

Ŝ(T ass
I (τ)(u)) v̂ σ

}
,

for each τ1 ∈ T Σ, for each τ2 ∈ T Σ,

Dass
I (τ1 ≈ τ2) =

u ∈ U

∣∣∣∣∣∣∣
T ass
I (τ1)(u) is defined,

T ass
I (τ2)(u) is defined, and

T ass
I (τ1)(u) = T ass

I (τ2)(u)

,

for each ρ ∈ R, for each x1 ∈ Var, . . . , for each xAR(ρ) ∈ Var,

Dass
I (ρ(x1, . . . , xAR(ρ)))

=
{
u ∈ U

∣∣∣〈ass(x1), . . . , ass(xAR(ρ))
〉
∈ R(ρ)

}
,

for each v ∈ Var, for each δ ∈ DΣ,
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Dass
I (∃v δ) =

u ∈ U

∣∣∣∣∣∣
for some u′ ∈ Cou

I ,

u ∈ D
assu

′
v

I (δ)

,

for each v ∈ Var, for each δ ∈ DΣ,

Dass
I (∀v δ) =

u ∈ U

∣∣∣∣∣∣
for each u′ ∈ Cou

I ,

u ∈ D
assu

′
v

I (δ)

,

for each δ ∈ DΣ,

Dass
I (¬δ) = U\Dass

I (δ),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,

Dass
I ([δ1 ∧ δ2]) = Dass

I (δ1) ∩Dass
I (δ2),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,

Dass
I ([δ1 ∨ δ2]) = Dass

I (δ1) ∪Dass
I (δ2),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,

Dass
I ([δ1 → δ2]) = (U\Dass

I (δ)) ∪Dass
I (δ2), and

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,

Dass
I ([δ1 ↔ δ2]) = ((U\Dass

I (δ1)) ∩ (U\Dass
I (δ2))) ∪ (Dass

I (δ1) ∩Dass
I (δ2)).

15 Proposition. For each signature Σ, for each Σ interpretation I, for each ass1 ∈ Ass I ,
for each ass2 ∈ Ass I ,

for each τ ∈ T Σ,

if for each v ∈ FV (τ), ass1(v) = ass2(v) then T ass1
I (τ) = T ass2

I (τ), and

for each δ ∈ DΣ,

if for each v ∈ FV (δ), ass1(v) = ass2(v) then Dass1
I (δ) = Dass2

I (δ).

16 Definition. For each signature Σ,

DΣ
0 = {δ ∈ DΣ | FV (δ) = ∅}.

17 Corollary. For each signature Σ, for each δ ∈ DΣ
0 , for each Σ interpretation I, for

each ass1 ∈ Ass I , for each ass2 ∈ Ass2,
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Dass1
I (δ) = Dass2

I (δ).

18 Definition. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, DI is
the total function from DΣ

0 to the powerset of U such that for each δ ∈ DΣ
0 ,

DI(δ) =

{
u ∈ U

∣∣∣∣∣for each ass ∈ AssI ,
u ∈ Dass

I (δ)

}
.

19 Definition. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, ΘI is
the total function from the powerset of DΣ

0 to the powerset of U such that for each θ ⊆ DΣ
0 ,

ΘI(θ) =

{
u ∈ U

∣∣∣∣∣for each δ ∈ θ,
u ∈ DI(δ)

}
.

20 Definition. Γ is a grammar iff

Γ is a pair 〈Σ, θ〉,
Σ is a signature, and

θ ⊆ DΣ
0 .

21 Definition. For each grammar Γ = 〈Σ, θ〉, for each Σ interpretation I = 〈U, S,A,R〉,

I is a Γ model iff ΘI(θ) = U .

22 Definition. For each grammar Γ = 〈Σ, θ〉, for each Σ interpretation I,

I is an exhaustive Γ model iff

I is a Γ model, and

for each θ′ ⊆ DΣ
0 , for each Σ interpretation I ′,

if I ′ is a Γ model and ΘI′(θ
′) 6= ∅,

then ΘI(θ
′) 6= ∅.
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2 A Different Characterization of Exhaustive Models

Suppose that S is a set. We write S
∗
for (S)∗ and S∗∗ for (S∗)∗.

23 Definition. For each signature Σ, for each Σ interpretation I1 = 〈U1, S1, A1, R1〉, for
each u1 ∈ U1, for each Σ interpretation I2 = 〈U2, S2, A2, R2〉, for each u2 ∈ U2,

f is a congruence from 〈u1, I1〉 to 〈u2, I2〉 in Σ

iff f is a bijection from Cou1
I1 to Cou2

I2 ,

for each u ∈ Cou1
I1 , Ŝ1(u) = Ŝ2(f(u)),

for each α ∈ Â, for each u ∈ Cou1
I1 ,

Â1(α)(u) is defined iff Â2(α)(f(u)) is defined, and
if Â1(α)(u) is defined then f(Â1(α)(u)) = Â2(α)(f(u)),

for each ρ ∈ R, for each o1 ∈ Cou1
I1 ,. . . , for each oAR(ρ) ∈ Cou1

I1 ,

〈o1, . . . , oAR(ρ)〉 ∈ R1(ρ) iff 〈f(o1), . . . , f(oAR(ρ))〉 ∈ R2(ρ), and

f(u1) = u2.

A first object in a first interpretation and a second object in a second interpretation
are congruent iff there is a species, attribute and relation preserving bijection from the
components of the first object in the first interpretation to the components of the second
object in the second interpretation such that the bijection maps the first object to the second
object.

24 Definition. For each signature Σ, for each Σ interpretation I1 = 〈U1, S1, A1, R1〉, for
each u1 ∈ U1, for each Σ interpretation I2 = 〈U2, S2, A2, R2〉, for each u2 ∈ U2,

〈u1, I1〉 and 〈u2, I2〉 are congruent in Σ

iff for some f , f is a congruence from 〈u1, I1〉 to 〈u2, I2〉 in Σ.

25 Definition. For each signature Σ, for each Σ interpretation I1 = 〈U1, S1, A1, R1〉, for
each u1 ∈ U1, for each Σ interpretation I2 = 〈U2, S2, A2, R2〉, for each u2 ∈ U2,

〈u1, I1〉 and 〈u2, I2〉 are indiscernible in Σ
iff for each δ ∈ DΣ

0 , u1 ∈ DI1(δ) iff u2 ∈ DI2(δ).

We use a standard definition of functional composition:

26 Definition. For each set U , for each set V , for each set W , for each total function
f from U to V , for each total function g from V to W ,

g ◦ f is the function from U to W such that, for each u ∈ U ,

g ◦ f(u) = g(f(u)).
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By proposition 15 the following definition is well-made.

27 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I = 〈U, S,A,R〉, TI is the partial function from the Cartesian product of A∗ and U to U
such that

for each π ∈ A∗, for each u ∈ U ,

TI(π, u) is defined iff for some ass ∈ AssI , T
ass
I (:π)(u) is defined, and

if TI(π, u) is defined then for some ass ∈ AssI , TI(π, u) = T ass
I (:π)(u),

for each 〈π1, . . . , πn〉 ∈ A∗∗, for each u ∈ U ,

TI(〈π1, . . . , πn〉, u) is defined
iff TI(π1, u) is defined, . . ., TI(πn, u) is defined, and

if TI(〈π1, . . . , πn〉, u) is defined
then TI(〈π1, . . . , πn〉, u) = 〈TI(π1, u), . . . , TI(πn, u)〉.

28 Proposition. For each signature Σ, for each Σ interpretation I1 = 〈U1, S1, A1, R1〉,
for each o1 ∈ U1, for each Σ interpretation I2 = 〈U2, S2, A2, R2〉, for each o2 ∈ U2,

〈o1, I1〉 and 〈o2, I2〉 are congruent in Σ iff 〈o1, I1〉 and 〈o2, I2〉 are indiscernible in Σ.

Proof. Firstly, for each signature Σ, for each Σ interpretation I1 = 〈U1, S1, A1, R1〉, for
each o1 ∈ U1, for each Σ interpretation I2 = 〈U2, S2, A2, R2〉, for each o2 ∈ U2, for each
congruence f from 〈o1, I1〉 to 〈o2, I2〉,

for each τ ∈ T Σ, for each total function ass from Var to Coo1
I1 ,

T ass
I1

(τ)(o1) is defined iff T f◦ass
I2

(τ)(o2) is defined, and

if T ass
I1

(τ)(o1) is defined then f(T ass
I1

(τ)(o1)) = T f◦ass
I2

(τ)(o2), and
by induction on the length of τ

for each δ ∈ DΣ, for each total function ass from Var to Coo1
I1
,

o1 ∈ Dass
I1
(δ) iff o2 ∈ Df◦ass

I2
(δ). by induction on the complexity of δ

(since, for each o ∈ U , f ◦ (ass o
x
) = (f ◦ ass) f(o)

x
)

Thus, for each signature Σ, for each Σ interpretation I1 = 〈U1, S1, A1, R1〉, for each o1 ∈ U1,
for each Σ interpretation I2 = 〈U2, S2, A2, R2〉, for each o2 ∈ U2,

〈o1, I1〉 and 〈o2, I2〉 are congruent in Σ

=⇒ for some congruence f , f is a congruence from 〈o1, I1〉 to 〈o2, I2〉 in Σ

=⇒ for each δ ∈ DΣ
0 ,
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o1 ∈ DI1(δ)

⇐⇒ for each ass ∈ AssI1 , o1 ∈ Dass
I1
(δ)

⇐⇒ for some ass ∈ AssI1 ,

o1 ∈ Dass
I1 (δ) and, for each v ∈ Var, ass(v) ∈ Coo1

I1 by corollary 17

⇐⇒ for some ass ∈ AssI2 ,

o2 ∈ Dass
I2
(δ) and, for each v ∈ Var, ass(v) ∈ Coo2

I2

⇐⇒ for each ass ∈ AssI2 , o2 ∈ Dass
I2
(δ)

⇐⇒ o2 ∈ DI2(δ)

=⇒ 〈o1, I1〉 and 〈o2, I2〉 are indiscernible in Σ.

Secondly, suppose Σ = 〈G,v,S,A,F ,R,AR〉 is a signature, I1 = 〈U1, S1, A1, R1〉 is a Σ
interpretation, o1 ∈ U1, I2 = 〈U2, S2, A2, R2〉 is a Σ interpretation, o2 ∈ U2, and 〈o1, I1〉 and
〈o2, I2〉 are indiscernible in Σ.

Firstly, for each π ∈ A∗, TI1(π, o1) is defined iff TI2(π, o2) is defined.
by induction on the length of π

Secondly, let f =


〈o′1, o′2〉 ∈ Coo1

I1 × Coo2
I2

∣∣∣∣∣∣∣∣∣∣∣∣

for some π ∈ A∗

TI1(π, o1) is defined,
TI2(π, o2) is defined,
o′1 = TI1(π, o1), and
o′2 = TI2(π, o2)


.

f is a bijection from Coo1
I1 to Coo2

I2 .

Let f be the total function from Coo1
I1 to Coo2

I2 such that,

for each u ∈ Coo1
I1 , f(u) = f(u), and

for each 〈u1, . . . , un〉 ∈ (Coo1
I1 )

∗, f(〈u1, . . . , un〉) = 〈f(u1), . . . , f(un)〉.

Clearly, f is a bijection.

Thirdly, for each u ∈ Coo1
I1
, S1(u) = S2(f(u)). Thus, for each u ∈ Coo1

I1
, Ŝ1(u) =

Ŝ2(f(u)).

Fourthly, for each α ∈ A, for each u ∈ Coo1
I1 ,

A1(α)(u) is defined iff A2(α)(f(u)) is defined, and

if A1(α)(u) is defined then f(A1(α)(u)) = A2(α)(f(u)).

Thus, for each α ∈ Â, for each u ∈ Coo1
I1
,

Â1(α)(u) is defined iff Â2(α)(f(u)) is defined, and

if Â1(α)(u) is defined then f(Â1(α)(u)) = Â2(α)(f(u)).
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Fifthly, for each ρ ∈ R, for each u1 ∈ Coo1
I1 , . . . , for each un ∈ Coo1

I1 ,

〈u1, . . . , un〉 ∈ RI1(ρ),

⇐⇒ for some π1 ∈ A∗, . . . , for some πn ∈ A∗,

u1 = TI1(π1, o1), . . . , un = TI1(πn, o1), and 〈u1, . . . , un〉 ∈ RI1(ρ)

⇐⇒ for some π1 ∈ A∗, . . . , for some πn ∈ A∗,

u1 = TI1(π1, o1), . . . , un = TI1(πn, o1), and

o1 ∈ DI1(∃x1 . . .∃xn (ρ(x1, . . . , xn) ∧ x1 ≈ :π1 ∧ . . . ∧ xn ≈ :πn))
2

⇐⇒ for some π1 ∈ A∗, . . . , for some πn ∈ A∗,

f(u1) = TI2(π1, o2), . . . , f(un) = TI2(πn, o2), and

o2 ∈ DI2(∃x1 . . .∃xn (ρ(x1, . . . , xn) ∧ x1 ≈ :π1 ∧ . . . ∧ xn ≈ :πn))

⇐⇒ for some π1 ∈ A∗, . . . , for some πn ∈ A∗,

f(u1) = TI2(π1, o2), . . . , f(un) = TI2(πn, o2), and 〈f(u1), . . . , f(un)〉 ∈ RI2(ρ)

⇐⇒ 〈f(u1), . . . , f(un)〉 ∈ RI2(ρ).

Finally, f(o1) = o2.

Therefore, f is a congruence from 〈o1, I1〉 to 〈o2, I2〉 in Σ. 〈o1, I1〉 and 〈o2, I2〉 are, thus,
congruent in Σ.

29 Definition. For each signature Σ, for each Σ interpretation I1 = 〈U1, S1, A1, R1〉, for
each Σ interpretation I2 = 〈U2, S2, A2, R2〉,

I1 simulates I2 in Σ

iff for each u2 ∈ U2, for some u1 ∈ U1, 〈u1, I1〉 and 〈u2, I2〉 are congruent in Σ.

A Σ interpretation I1 simulates Σ interpretation I2 just in case every object in I2 has a
congruent counterpart in I1.

30 Proposition. For each signature Σ,

for each Σ interpretation I ,

I simulates I in Σ, and

for each Σ interpretation I1, for each Σ interpretation I2, for each Σ interpretation I3,

if I1 simulates I2 in Σ and I2 simulates I3 in Σ then I1 simulates I3 in Σ.

31 Proposition. For each signature Σ, for each θ ⊆ DΣ
0 , for each Σ interpretation I,

2We write x ≈ :〈π1, . . . , πn〉 as an abbreviation for x† ≈ :π1 ∧ . . . ∧ x .i † ≈ :πi+1 ∧ . . . ∧ x.n ∼ echain
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for each Σ interpretation I ′,

if I ′ is a 〈Σ, θ〉 model then I simulates I ′ in Σ

iff for each θ′ ⊆ DΣ
0 , for each Σ interpretation I ′,

if I ′ is a 〈Σ, θ〉 model and ΘI′(θ
′) 6= ∅ then ΘI(θ

′) 6= ∅.

Proof. Firstly, for each signature Σ, for each θ ⊆ DΣ
0 , for each Σ interpretation I =

〈U, S,A,R〉,

for each Σ interpretation I ′ = 〈U ′, S ′, A′, R′〉,
if I ′ is a 〈Σ, θ〉 model then I simulates I ′

=⇒ for each θ′ ⊆ DΣ
0 , for each Σ interpretation I ′ = 〈U ′, S ′, A′, R′〉,

I ′ is a 〈Σ, θ〉 model and ΘI′(θ
′) 6= ∅

=⇒ I simulates I ′ in Σ and, for some u′ ∈ U ′, u′ ∈ ΘI′(θ
′)

=⇒ for some u ∈ U , for some u′ ∈ U ′,
〈u, I〉 and 〈u′, I ′〉 are congruent in Σ and u′ ∈ ΘI′(θ

′)

=⇒ for some u ∈ U , for some u′ ∈ U ′,
〈u, I〉 and 〈u′, I ′〉 are indiscernible in Σ and u′ ∈ ΘI′(θ

′) by proposition 28

=⇒ for some u ∈ U , u ∈ ΘI(θ
′)

=⇒ ΘI(θ
′) 6= ∅.

Secondly, for each signature Σ, for each θ ⊆ DΣ
0 , for each Σ interpretation I = 〈U, S,A,R〉,

for each θ′ ⊆ DΣ
0 , for each Σ interpretation I ′,

if I ′ is a 〈Σ, θ〉 model and ΘI′(θ
′) 6= ∅ then ΘI(θ

′) 6= ∅
=⇒ for each Σ interpretation I ′ = 〈U ′, S ′, A′, R′〉,

I ′ is a 〈Σ, θ〉 model

=⇒ for each u′,

u′ ∈ U ′

=⇒ u′ ∈ ΘI′
{
δ ∈ DΣ

0

∣∣∣u′ ∈ DI′(δ)
}

=⇒ ΘI′
{
δ ∈ DΣ

0

∣∣∣u′ ∈ DI′(δ)
}
6= ∅

=⇒ ΘI

{
δ ∈ DΣ

0

∣∣∣u′ ∈ DI′(δ)
}
6= ∅

=⇒ for some u ∈ U , u ∈ ΘI

{
δ ∈ DΣ

0

∣∣∣u′ ∈ DI′(δ)
}

=⇒ for some u ∈ U , for each δ ∈ DΣ
0 ,

u ∈ DI(δ)

=⇒ u 6∈ DI(¬δ)
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=⇒ ¬δ 6∈
{
δ ∈ DΣ

0

∣∣∣u′ ∈ DI′(δ)
}

=⇒ u′ 6∈ DI′(¬δ)

=⇒ u′ ∈ DI′(δ), and

u′ ∈ DI′(δ)

=⇒ δ ∈
{
δ ∈ DΣ

0

∣∣∣u′ ∈ DI′(δ)
}

=⇒ u ∈ DI(δ)

=⇒ for some u ∈ U , 〈u, I〉 and 〈u′, I ′〉 are indiscernible in Σ

=⇒ for some u ∈ U , 〈u, I〉 and 〈u′, I ′〉 are congruent in Σ by proposition 28

=⇒ I simulates I ′ in Σ.

32 Theorem. For each signature Σ, for each θ ⊆ DΣ
0 , for each Σ interpretation I,

I is an exhaustive 〈Σ, θ〉 model

iff I is a 〈Σ, θ〉 model, and for each Σ interpretation I ′,

if I ′ is a 〈Σ, θ〉 model then I simulates I ′ in Σ.

3 Existence Proof for Exhaustive Models

In this section we show that, for each grammar, there exists an exhaustive model. For each
grammar 〈Σ, θ〉, we construct a Σ interpretation which we call the canonical Σ interpretation
of θ. We then show that the canonical Σ interpretation is an exhaustive model of the grammar
〈Σ, θ〉.

Suppose Σ = 〈G,v,S,A,F ,R,AR〉 is a signature. We call each member of A∗ a Σ path,
and write ε for the empty path, the unique path of length zero.

33 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉,

µ is a morph in Σ

iff µ is a quadruple 〈β, %, λ, ξ〉,
β ⊆ A∗,

ε ∈ β,

for each π ∈ A∗, for each α ∈ A,

if πα ∈ β then π ∈ β,

% is an equivalence relation over β,

for each π1 ∈ A∗, for each π2 ∈ A∗, for each α ∈ A,
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if π1α ∈ β and 〈π1, π2〉 ∈ % then 〈π1α, π2α〉 ∈ %,

λ is a total function from β to S,
for each π1 ∈ A∗, for each π2 ∈ A∗,

if 〈π1, π2〉 ∈ % then λ(π1) = λ(π2),

for each π ∈ A∗, for each α ∈ A,

if πα ∈ β then F〈λ(π), α〉 is defined and λ(πα) v F〈λ(π), α〉,
for each π ∈ A∗, for each α ∈ A,

if π ∈ β and F〈λ(π), α〉 is defined then πα ∈ β,

ξ ⊆ R× β
∗
,

for each ρ ∈ R, for each π1 ∈ β,. . . , for each πn ∈ β,

if 〈ρ, π1, . . . , πn〉 ∈ ξ then n = AR(ρ), and

for each ρ ∈ R, for each π1 ∈ β, . . ., for each πn ∈ β, for each π′
1 ∈ β, . . ., for each

π′
n ∈ β,

if 〈ρ, π1, . . . , πn〉 ∈ ξ, and
for each i ∈ {1, . . . , n},
πi ∈ β and 〈πi, π

′
i〉 ∈ %, or

for some m ∈ IN,

πi ∈ β∗,
πi = 〈πi1 , . . . , πim〉,
π′
i = 〈π′

i1
, . . . , π′

im〉, and
〈πi1 , π

′
i1
〉 ∈ %, . . . , 〈πim , π

′
im〉 ∈ %,

then 〈ρ, π′
1, . . . , π

′
n〉 ∈ ξ.

Suppose Σ is a signature and µ = 〈β, %, λ, ξ〉 is a Σ morph. We call β the basis set in
µ, % the re-entrancy relation in µ, λ the label function in µ, and ξ the relation extension in
µ. We write MΣ for the set of Σ morphs. Our Σ morphs are a straigthforward extension of
abstract feature structures in the sense of (Moshier 1988).

34 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each π ∈ A∗, for
each 〈π1, . . . , πn〉 ∈ A∗∗,

π〈π1, . . . , πn〉 is an abbreviatory notation for 〈ππ1, . . . , ππn〉.

35 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each µ = 〈β, %, λ, ξ〉 ∈
MΣ, for each π ∈ A∗,

β/π = {π′ ∈ A∗ | ππ′ ∈ β},
%/π = {〈π1, π2〉 ∈ A∗ ×A∗ | 〈ππ1, ππ2〉 ∈ %},
λ/π = {〈π′, σ〉 ∈ A∗ × S | 〈ππ′, σ〉 ∈ λ},
ξ/π = {〈ρ, π1, . . . , πn〉 ∈ R× (β/π)

∗ | 〈ρ, ππ1, . . . , ππn〉 ∈ ξ}, and
µ/π = 〈β/π, %/π, λ/π, ξ/π〉.
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If Σ is a signature, µ is a Σ morph and π is a Σ path then we call µ/π the π reduct of µ.

36 Proposition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each µ = 〈β, %, λ, ξ〉 ∈
MΣ, for each π ∈ A∗,

if π ∈ β then µ/π ∈ MΣ.

37 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉,

IΣ is the set of total functions from Var to A∗.

Let Σ be a signature. Then we call each member of IΣ a Σ insertion.

38 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉,

TΣ is the smallest partial function from A∗ × Â to A∗ such that,

for each π ∈ A∗, for each α ∈ A,

TΣ(π, α) = πα,

for each 〈π0, . . . , πn〉 ∈ A∗∗,

TΣ(〈π0, . . . , πn〉, †) = π0,
TΣ(〈π0, . . . , πn〉, .) = 〈π1, . . . , πn〉.

39 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each ι ∈ IΣ,

Πι
Σ is the smallest partial function from T Σ to A∗ such that

Πι
Σ(:) = ε,

for each v ∈ Var, Πι
Σ(v) = ι(v), and

for each τ ∈ T Σ, for each α ∈ Â, Πι
Σ(τα) = TΣ(Π

ι
Σ(τ), α).

Suppose Σ is a signature, and ι is a Σ insertion. Then we call each Πι
Σ the path insertion

function for ι in Σ.

40 Definition. For each signature Σ, for each 〈β, %, λ, ξ〉 ∈ MΣ,

%̂ is the smallest subset of β × β such that

% ⊆ %̂, and

for each π1 ∈ β, . . . , πn ∈ β, for each π′
1 ∈ β, . . . , π′

n ∈ β,

if 〈π1, π
′
1〉 ∈ %, . . . , and 〈πn, π

′
n〉 ∈ %

then 〈〈π1, . . . , πn〉, 〈π′
1, . . . , π

′
n〉〉 ∈ %̂,

λ̂ is the total function from β to Ŝ such that
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for each π ∈ β, λ̂(π) = λ(π),

for each π1 ∈ β, . . . , for each πn ∈ β,

λ̂(〈π1, . . . , πn〉) =
{

echain if n = 0,
nechain if n > 0.

41 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each ι ∈ IΣ, ∆
ι
Σ is

the total function from DΣ to MΣ such that

for each τ ∈ T Σ, for each σ ∈ Ĝ,

∆ι
Σ(τ ∼ σ) =

〈β, %, λ, ξ〉 ∈ MΣ

∣∣∣∣∣∣∣
Πι

Σ(τ) is defined, and,

for some σ′ ∈ Ŝ,
〈Πι

Σ(τ), σ
′〉 ∈ λ̂ and σ′ v̂ σ

,

for each τ1 ∈ T Σ, for each τ2 ∈ T Σ,

∆ι
Σ(τ1 ≈ τ2) =

〈β, %, λ, ξ〉 ∈ MΣ

∣∣∣∣∣∣∣
Πι

Σ(τ1) is defined,
Πι

Σ(τ2) is defined, and
〈Πι

Σ(τ1),Π
ι
Σ(τ2)〉 ∈ %̂

,

for each ρ ∈ R, for each v1 ∈ Var, . . ., for each vn ∈ Var,

∆ι
Σ(ρ(v1, . . . , vn)) =

{
〈β, %, λ, ξ〉 ∈ MΣ

∣∣∣〈ρ, ι(v1), . . . , ι(vn)〉 ∈ ξ
}
,

for each v ∈ Var, for each δ ∈ DΣ,

∆ι
Σ(∃v δ) =

{
〈β, %, λ, ξ〉 ∈ MΣ

∣∣∣∣∣for some π ∈ β,

〈β, %, λ, ξ〉 ∈ ∆
ι[π

v
]

Σ (δ)

}
,

for each v ∈ Var, for each δ ∈ DΣ,

∆ι
Σ(∀v δ) =

{
〈β, %, λ, ξ〉 ∈ MΣ

∣∣∣∣∣for each π ∈ β,

〈β, %, λ, ξ〉 ∈ ∆
ι[π

v
]

Σ (δ)

}
,

for each δ ∈ DΣ,

∆ι
Σ(¬δ) = MΣ\∆ι

Σ(δ),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,

∆ι
Σ([δ1 ∧ δ2]) = ∆ι

Σ(δ1) ∩∆ι
Σ(δ2),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,

∆ι
Σ([δ1 ∨ δ2]) = ∆ι

Σ(δ1) ∪∆ι
Σ(δ2),

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,
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∆ι
Σ([δ1 → δ2]) = (MΣ\∆ι

Σ(δ1)) ∪∆ι
Σ(δ2), and

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,

∆ι
Σ([δ1 ↔ δ2]) = ((MΣ\∆ι

Σ(δ1)) ∩ (MΣ\∆ι
Σ(δ2))) ∪ (∆ι

Σ(δ1) ∩∆ι
Σ(δ2)).

Let Σ be a signature, µ a Σ morph, ι a Σ insertion and δ a Σ description. We call ∆ι
Σ the

morph satisfaction function in Σ, and say µ satisfies δ under ι in Σ if and only if ∆ι
Σ(δ) = µ.

42 Proposition. For each signature Σ, for each ι1 ∈ IΣ, for each ι2 ∈ IΣ,

for each τ ∈ T Σ,

if for each v ∈ FV (τ), ι1(v) = ι2(v)

then Πι1
Σ (τ) is defined iff Πι2

Σ (τ) is defined, and

if Πι1
Σ (τ) is defined then Πι1

Σ (τ) = Πι2
Σ (τ), and

for each δ ∈ DΣ,

if for each v ∈ FV (δ), ι1(v) = ι2(v)

then ∆ι1
Σ (δ) = ∆ι2

Σ (δ).

Proof. By induction on the length of τ and the complexity of δ, respectively.

43 Definition. For each signature Σ,

MΣ is the total function from Pow (DΣ
0 ) to Pow (MΣ) such that for each θ ⊆ DΣ

0 ,

MΣ(θ) =

{
〈β, %, λ, ξ〉 ∈ MΣ

∣∣∣∣∣for each π ∈ β, for each ι ∈ IΣ, for each δ ∈ θ,
〈β, %, λ, ξ〉/π = ∆ι

Σ(δ)

}
.

Let Σ be a signature. We call MΣ the morph admission function in Σ.

44 Definition. For each signature Σ,

o is a canonical object in Σ

iff o is a quintuple 〈β, %, λ, ξ, η〉,
〈β, %, λ, ξ〉 ∈ MΣ, and

η ∈ Quo(%).3

Suppose that Σ is a signature. We write CΣ for the set of canonical objects in Σ. Suppose
further that 〈β, %, λ, ξ〉 ∈ MΣ and π ∈ β. We write |π|% for the equivalence class of π in
%. Thus, we write 〈β, %, λ, ξ, |π|%〉 for the canonical object 〈β, %, λ, ξ, η〉, where η is the
equivalence class of π in %.

45 Definition. For each signature Σ, for each θ ∈ DΣ
0 , for each 〈〈β, %, λ, ξ, |π1|%〉, . . . ,

〈β, %, λ, ξ, |πn|%〉〉 ∈ (Uθ
Σ)

∗,

3Quo(%) is the quotient of %, i.e., the set of equivalence classes of %.
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〈β, %, λ, ξ, |〈π1, . . . , πn〉|%〉 is an abbreviatory notation for

〈〈β, %, λ, ξ, |π1|%〉, . . . , 〈β, %, λ, ξ, |πn|%〉〉.

46 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each θ ⊆ DΣ
0 ,

Uθ
Σ =

{
〈β, %, λ, ξ, η〉 ∈ CΣ

∣∣∣〈β, %, λ, ξ〉 ∈ MΣ(θ)
}
,

Sθ
Σ =

〈u, σ〉 ∈ Uθ
Σ × S

∣∣∣∣∣∣∣∣∣
for some 〈β, %, λ, ξ〉 ∈ MΣ(θ),
for some π ∈ β,
u = 〈β, %, λ, ξ, |π|%〉, and
σ = λ(π)

,

Aθ
Σ is the total function from A to Pow(Uθ

Σ ×Uθ
Σ) such that for each α ∈ A,

Aθ
Σ(α) =

〈u, u′〉 ∈ Uθ
Σ ×Uθ

Σ

∣∣∣∣∣∣∣∣∣
for some 〈β, %, λ, ξ〉 ∈ MΣ(θ),
for some π ∈ β,
u = 〈β, %, λ, ξ, |π|%〉 and
u′ = 〈β, %, λ, ξ, |πα|%〉

,

Rθ
Σ is the total function from R to the powerset of Uθ

Σ

∗
such that for each ρ ∈ R,

Rθ
Σ(ρ) =

〈u1, . . . , un〉
∈ Uθ

Σ

∗

∣∣∣∣∣∣∣
for some 〈β, %, λ, ξ〉 ∈ MΣ(θ),
for some 〈ρ, π1, . . . , πn〉 ∈ ξ,
u1 = 〈β, %, λ, ξ, |π1|%〉, . . . , un = 〈β, %, λ, ξ, |πn|%〉

,

IθΣ = 〈Uθ
Σ,S

θ
Σ,A

θ
Σ,R

θ
Σ〉.

47 Proposition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each θ ⊆ DΣ
0 ,

Uθ
Σ is a set,

Sθ
Σ is a total function from Uθ

Σ to S,
Aθ

Σ is a total function from A to the set of partial functions from Uθ
Σ to Uθ

Σ,

Rθ
Σ is a total function from R to the powerset of Uθ

Σ

∗
, and

IθΣ is a Σ interpretation.

Let Σ be a signature and θ ⊆ DΣ
0 , We call IθΣ the canonical Σ interpretation of θ.

48 Proposition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each 〈β, %, λ, ξ, |π|%〉 ∈
CΣ, for each total function ι from Var to β/π, for each τ ∈ T Σ,

if Πι
Σ(τ) is defined and Πι

Σ(τ) ∈ A∗∗

then πΠι
Σ(τ) ∈ β∗.

Proof. By arithmetic induction on the length of τ .

49 Proposistion. For each signature Σ, for each θ ⊆ DΣ
0 ,
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IθΣ is a 〈Σ, θ〉 model.

Proof. Throughout this proof, suppose that, for each signature Σ, for each θ ⊆ DΣ
0 , for

each o = 〈β, %, λ, ξ, |π|%〉 ∈ Uθ
Σ, for each total function ι from Var to β/π,

assιo is the total function from Var to Uθ
Σ such that

for each v ∈ Var, assιo(v) = 〈β, %, λ, ξ, |πι(v)|%〉.

Firstly, for each signature Σ, for each θ ⊆ DΣ
0 , for each o = 〈β, %, λ, ξ, |π|%〉 ∈ Uθ

Σ, for each
τ ∈ T Σ, for each total function ι from Var to β/π,

T
assιo
IθΣ

(τ)(〈β, %, λ, ξ, |π|%〉) is defined iff Πι
Σ(τ) is defined and πΠι

Σ(τ) ∈ β, and

if T
assιo
Iθ
Σ

(τ)(〈β, %, λ, ξ, |π|%〉) is defined
then T

assιo
Iθ
Σ

(τ)(〈β, %, λ, ξ, |π|%〉) = 〈β, %, λ, ξ, |πΠι
Σ(τ)|%〉.

by proposition 48 and arithmetic induction on the length of τ

Secondly, for each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each θ ⊆ DΣ
0 , for each o =

〈β, %, λ, ξ, |π|%〉 ∈ Uθ
Σ, for each total function ι from Var to β/π,

for each τ ∈ T Σ, for each σ ∈ G,

〈β, %, λ, ξ, |π|%〉 ∈ D
assιo
Iθ
Σ

(τ ∼ σ)

⇐⇒ T
assιo
IθΣ

(τ)(〈β, %, λ, ξ, |π|%〉) is defined and Ŝθ
Σ(T

assιo
IθΣ

(τ)(〈β, %, λ, ξ, |π|%〉)) v̂ σ

⇐⇒ Πι
Σ(τ) is defined, πΠ

ι
Σ(τ) ∈ β, and Ŝθ

Σ(〈β, %, λ, ξ, |πΠι
Σ(τ)|%〉) v̂ σ

⇐⇒ Πι
Σ(τ) is defined, and λ̂/π(Πι

Σ(τ)) v̂ σ

⇐⇒ 〈β, %, λ, ξ〉/π ∈ ∆ι
Σ(τ ∼ σ),

for each τ1 ∈ T Σ, for each τ2 ∈ T Σ,

〈β, %, λ, ξ, |π|%〉 ∈ D
assιo
Iθ
Σ

(τ1 ≈ τ2)

⇐⇒ T
assιo
IθΣ

(τ1)(〈β, %, λ, ξ, |π|%〉) is defined, T assιo
IθΣ

(τ2)(〈β, %, λ, ξ, |π|%〉) is defined, and

T
assιo
Iθ
Σ

(τ1)(〈β, %, λ, ξ, |π|%〉) = T
assιo
Iθ
Σ

(τ2)(〈β, %, λ, ξ, |π|%〉)

⇐⇒ Πι
Σ(τ1) is defined, πΠ

ι
Σ(τ1) ∈ β, Πι

Σ(τ2) is defined, πΠ
ι
Σ(τ2) ∈ β, and

〈β, %, λ, ξ, |πΠι
Σ(τ1)|%〉 = 〈β, %, λ, ξ, |πΠι

Σ(τ2)|%〉

⇐⇒ Πι
Σ(τ1) is defined, Π

ι
Σ(τ2) is defined, and 〈Πι

Σ(τ1),Π
ι
Σ(τ2)〉 ∈ %̂/π

⇐⇒ 〈β, %, λ, ξ〉/π ∈ ∆ι
Σ(τ1 ≈ τ2),

for each ρ ∈ R, for each x1 ∈ Var, . . . , for each xAR(ρ) ∈ Var,
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〈β, %, λ, ξ, |π|%〉 ∈ D
assιo
Iθ
Σ

(ρ(x1, . . . , xAR(ρ)))

⇐⇒ 〈assιo(x1), . . . , ass
ι
o(xAR(ρ))〉 ∈ Rθ

Σ(ρ)

⇐⇒ 〈〈β, %, λ, ξ, |πι(x1)|%〉, . . . , 〈β, %, λ, ξ, |πι(xAR(ρ))|%〉〉 ∈ Rθ
Σ(ρ)

⇐⇒ 〈ρ, πι(x1), . . . , πι(xAR(ρ))〉 ∈ ξ

⇐⇒ 〈ρ, ι(x1), . . . , ι(xAR(ρ))〉 ∈ ξ/π

⇐⇒ 〈β, %, λ, ξ〉/π ∈ ∆ι
Σ(ρ(x1, . . . , xAR(ρ))).

Thus, for each signature Σ, for each θ ⊆ DΣ
0 , for each o = 〈β, %, λ, ξ, |π|%〉 ∈ Uθ

Σ, for each
δ ∈ DΣ, for each total function ι from Var to β/π,

〈β, %, λ, ξ, |π|%〉 ∈ D
assιo
IθΣ

(δ) iff 〈β, %, λ, ξ〉/π ∈ ∆ι
Σ(δ).

by arithmetic induction on the complexity of δ

(since, for each π′ ∈ β/π, assιo
〈β,%,λ,ξ,|ππ′|%〉

v
= ass

ιπ
′
v

o )

Thus, for each signature Σ, for each θ ⊆ DΣ
0 , for each 〈β, %, λ, ξ, |π|%〉 ∈ CΣ,

〈β, %, λ, ξ, |π|%〉 ∈ Uθ
Σ,

=⇒ 〈β, %, λ, ξ, |π|%〉 ∈ Uθ
Σ, 〈β, %, λ, ξ〉 ∈ MΣ(θ) and π ∈ β

=⇒ 〈β, %, λ, ξ, |π|%〉 ∈ Uθ
Σ,

for each δ ∈ θ, for each total function ι from Var to β/π,

〈β, %, λ, ξ〉/π ∈ ∆ι
Σ(δ)

=⇒ for each δ ∈ θ, for each total function ι from Var to β/π,

〈β, %, λ, ξ, |π|%〉 ∈ D
assιo
IθΣ

(δ)

=⇒ for each δ ∈ θ, for some ass ∈ Ass IθΣ ,

〈β, %, λ, ξ, |π|%〉 ∈ Dass
IθΣ

(δ)

=⇒ for each δ ∈ θ, for each ass ∈ Ass IθΣ ,

〈β, %, λ, ξ, |π|%〉 ∈ Dass
IθΣ

(δ) by corollary 17

=⇒ 〈β, %, λ, ξ, |π|%〉 ∈ ΘIθΣ
(θ).

50 Definition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I = 〈U, S,A,R〉,

AI is the binary relation on U ×MΣ such that, for each u ∈ U , for each 〈β, %, λ, ξ〉 ∈
MΣ, 〈u, 〈β, %, λ, ξ〉〉 ∈ AI iff
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β =
{
π ∈ A∗

∣∣∣TI(π, u) is defined
}
,

% =

〈π1, π2〉 ∈ A∗ ×A∗

∣∣∣∣∣∣∣
TI(π1, u) is defined,
TI(π2, u) is defined, and
TI(π1, u) = TI(π2, u)

,

λ =

{
〈π, σ〉 ∈ A∗ × S

∣∣∣∣∣TI(π, u) is defined,
S(TI(π, u)) = σ

}
,

ξ =

〈ρ, π1, . . . , πn〉 ∈ R × (A∗)∗

∣∣∣∣∣∣∣
TI(π1, u) is defined, . . . ,
TI(πn, u) is defined, and
〈TI(π1, u), . . . , TI(πn, u)〉 ∈ R(ρ)

.

51 Proposition. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉,

AI is a total function from U to MΣ.

52 Proposition. For each signature Σ, for each Σ interpretation I1 = 〈U1, S1, A1, R1〉,
for each Σ interpretation I2 = 〈U2, S2, A2, R2〉, for each o1 ∈ U1, for each o2 ∈ U2,

AI1(o1) = AI2(o2)

iff 〈o1, I1〉 and 〈o2, I2〉 are congruent in Σ.

Proof. Firstly, for each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation
I1 = 〈U1, S1, A1, R1〉, for each Σ interpretation I2 = 〈U2, S2, A2, R2〉, for each o1 ∈ U1, for
each o2 ∈ U2,

AI1(o1) = AI2(o2)

=⇒


〈o′1, o′2〉 ∈ U1 × U2

∣∣∣∣∣∣∣∣∣∣∣∣

for some π ∈ A∗,
TI1(π, o1) is defined,
TI2(π, o2) is defined,
o′1 = TI1(π, o1), and
o′2 = TI2(π, o2)


is a congruence from 〈o1, I1〉 to 〈o2, I2〉 in Σ

=⇒ 〈o1, I1〉 and 〈o2, I2〉 are congruent in Σ.

Secondly, for each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpretation I1 =
〈U1, S1, A1, R1〉, for each Σ interpretation I2 = 〈U2, S2, A2, R2〉, for each o1 ∈ U1, for each
o2 ∈ U2,

〈o1, I1〉 and 〈o2, I2〉 are congruent in Σ

=⇒ for some f , f is a congruence from 〈o1, I1〉 to 〈o2, I2〉
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=⇒ for some congruence f from 〈o1, I1〉 to 〈o2, I2〉, for each π ∈ A∗,

TI1(π, o1) is defined iff TI2(π, o2) is defined, and

if TI1(π, o1) is defined then f(TI1(π, o1)) = TI2(π, o2)
by induction on the length of π

=⇒ AI1(o1) = AI2(o2).

53 Lemma. For each signature Σ, for each 〈β, %, λ, ξ〉 ∈ MΣ,

for each τ ∈ T Σ, for each ι1 ∈ IΣ, for each ι2 ∈ IΣ,

if for each v ∈ Var, ι1(v) ∈ β and ι2(v) ∈ β, and

for each v ∈ FV (τ), 〈ι1(v), ι2(v)〉 ∈ %̂

then Πι1
Σ (τ) is defined and Πι1

Σ (τ) ∈ β iff Πι2
Σ (τ) is defined and Πι2

Σ (τ) ∈ β, and

if Πι1
Σ (τ) is defined and Πι1

Σ (τ) ∈ β then 〈Πι1
Σ (τ),Π

ι2
Σ (τ)〉 ∈ %̂, and

for each δ ∈ DΣ, for each ι1 ∈ IΣ, for each ι2 ∈ IΣ,

if for each v ∈ Var, ι1(v) ∈ β and ι2(v) ∈ β, and

for each v ∈ FV (δ), 〈ι1(v), ι2(v)〉 ∈ %̂

then 〈β, %, λ, ξ〉 ∈ ∆ι1
Σ (δ) iff 〈β, %, λ, ξ〉 ∈ ∆ι2

Σ (δ).

Proof. By proposition 48 and induction on the length of τ , and by induction on the
complexity of δ, respectively.

54 Definition. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, for each
o ∈ U , for each ι ∈ IΣ,

assιo,I =

{
〈v, o′〉 ∈ Var × U

∣∣∣∣∣TI(Π
ι
Σ(v), o) is defined, and

TI(Π
ι
Σ(v), o) = o′

}
.

55 Proposition. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, for
each o ∈ U , for each 〈β, %, λ, ξ〉 ∈ MΣ, for each ι ∈ IΣ,

if for each v ∈ Var, ι(v) ∈ β, and

AI(o) = 〈β, %, λ, ξ〉

then assιo,I ∈ Ass I .

56 Lemma. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, for each
o ∈ U , for each 〈β, %, λ, ξ〉 ∈ MΣ, for each τ ∈ T Σ, for each ι ∈ IΣ,
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if for each v ∈ Var, ι(v) ∈ β, and

AI(o) = 〈β, %, λ, ξ〉

then T
assιo,I
I (τ)(o) is defined iff TI(Π

ι
Σ(τ), o) is defined, and

if T
assιo,I
I (τ)(o) is defined then T

assιo,I
I (τ)(o) = TI(Π

ι
Σ(τ), o).

Proof. By proposition 48 and induction on the length of τ .

57 Proposition. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, for
each o ∈ U , for each 〈β, %, λ, ξ〉 ∈ MΣ, for each δ ∈ DΣ, for each ι ∈ IΣ,

if for each v ∈ Var, ι(v) ∈ β, and

AI(o) = 〈β, %, λ, ξ〉

then o ∈ D
assιo,I
I (δ) iff 〈β, %, λ, ξ〉 ∈ ∆ι

Σ(δ).

Proof. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, for each o ∈ U ,
for each o′ ∈ Coo

I , let #(o′) be a π ∈ β such that

o′ = TI(π, o).

We can then show that for each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, for
each o ∈ U , for each 〈β, %, λ, ξ〉 ∈ MΣ, for each ι ∈ IΣ,

if for each v ∈ Var, ι(v) ∈ β, and

AI(o) = 〈β, %, λ, ξ〉

then for each o′ ∈ Coo
I , for each v ∈ Var, assιo,I

o′
v
= ass

ι
#(o′)

v
o,I , and

for each π ∈ β, for each o′ ∈ Coo
I ,

o′ = TI(π, o)

=⇒ TI(#(o′), o) = TI(π, o)

=⇒ 〈#(o′), π〉 ∈ %̂

=⇒ for each δ ∈ DΣ,

〈β, %, λ, ξ〉 ∈ ∆
ι
#(o′)

v
Σ (δ) iff 〈β, %, λ, ξ〉 ∈ ∆

ιπ
v

Σ (δ). by lemma 53

Using this result, the proposition follows by lemma 56 and induction on the complexity of
δ.

58 Lemma. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each interpretation
I = 〈U, S,A,R〉, for each o ∈ U , for each π ∈ A∗, for each π′ ∈ A∗,

TI(ππ
′, o) is defined iff TI(π

′, TI(π, o)) is defined, and

if TI(ππ
′, o) is defined then TI(ππ

′, o) = TI(π
′, TI(π, o)).
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Proof. By induction on the length of π′.

59 Lemma. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each interpretation
I = 〈U, S,A,R〉, for each o ∈ U , for each π ∈ A∗, for each π′ ∈ A∗∗,

TI(ππ
′, o) is defined iff TI(π

′, TI(π, o)) is defined, and

if TI(ππ
′, o) is defined then TI(ππ

′, o) = TI(π
′, TI(π, o)).

Proof. Follows from lemma 58.

60 Proposition. For each signature Σ = 〈G,v,S,A,F ,R,AR〉, for each Σ interpreta-
tion I = 〈U, S,A,R〉, for each o ∈ U , for each π ∈ A∗,

if TI(π, o) is defined then AI(TI(π, o)) = AI(o)/π.

Proof. Uses lemma 58 and lemma 59.

61 Proposition. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, for
each θ ⊆ DΣ

0 ,

if I is a 〈Σ, θ〉 model

then for each o ∈ U , AI(o) ∈ MΣ(θ).

Proof. For each signature Σ, for each Σ interpretation I = 〈U, S,A,R〉, for each θ ⊆ DΣ
0 ,

I is a 〈Σ, θ〉 model

=⇒ for each o ∈ U , for each 〈β, %, λ, ξ〉 ∈ MΣ,

〈β, %, λ, ξ〉 = AI(o)

=⇒ for each π ∈ β,

〈β, %, λ, ξ〉/π = AI(TI(π, o)) by proposition 60

=⇒ for each π ∈ β, for each ass ∈ AssI , for each δ ∈ θ,

〈β, %, λ, ξ〉/π = AI(TI(π, o)) and TI(π, o) ∈ Dass
I (δ)

=⇒ for each π ∈ β, for each total function ι:Var → β/π, for each δ ∈ θ,

〈β, %, λ, ξ〉/π = AI(TI(π, o)) and TI(π, o) ∈ D
assι

TI (π,o),I

I (δ)
by proposition 55

=⇒ for each π ∈ β, for each total function ι:Var → β/π, for each δ ∈ θ,

〈β, %, λ, ξ〉/π ∈ ∆ι
Σ(δ) by proposition 57

=⇒ for each π ∈ β, for some ι ∈ IΣ, for each δ ∈ θ,

〈β, %, λ, ξ〉/π ∈ ∆ι
Σ(δ) since β/π 6= ∅
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=⇒ for each π ∈ β, for each ι ∈ IΣ, for each δ ∈ θ,

〈β, %, λ, ξ〉/π ∈ ∆ι
Σ(δ) by proposition 42

=⇒ 〈β, %, λ, ξ〉 ∈ MΣ(θ)

=⇒ for each o ∈ U , AI(o) ∈ MΣ(θ). by proposition 51

62 Proposition. For each signature Σ, for each θ ⊆ DΣ
0 , for each 〈β, %, λ, ξ〉 ∈ MΣ(θ),

AIθΣ
(〈β, %, λ, ξ, |ε|%〉) = 〈β, %, λ, ξ〉.

Proof. Follows from the observation that, for each signature Σ = 〈G,v,S,A,F ,R,AR〉,
for each θ ⊆ DΣ

0 , for each 〈β, %, λ, ξ, |ε|%〉 ∈ Uθ
Σ, for each π ∈ A∗,

π ∈ β iff TIθΣ
(π, 〈β, %, λ, ξ, |ε|%〉) is defined, and

if π ∈ β then TIθΣ
(π, 〈β, %, λ, ξ, |ε|%〉) = 〈β, %, λ, ξ, |π|%〉. by induction on the length of π

63 Proposition. For each signature Σ, for each θ ⊆ DΣ
0 ,

IθΣ is an exhaustive 〈Σ, θ〉 model.

Proof. For each signature Σ, for each θ ⊆ DΣ
0 ,

IθΣ is a 〈Σ, θ〉 model, and by proposition 49

for each Σ interpretation I = 〈U, S,A,R〉,

I is a 〈Σ, θ〉 model

=⇒ for each o ∈ U ,

AI(o) ∈ MΣ(θ) by proposition 61

=⇒ for each o ∈ U , for some 〈β, %, λ, ξ〉 ∈ MΣ(θ),

AI(o) = 〈β, %, λ, ξ〉, and
AIθΣ

(〈β, %, λ, ξ, |ε|%〉) = 〈β, %, λ, ξ〉 by proposition 62

=⇒ for each o ∈ U , for some o′ ∈ Uθ
Σ,

〈o′, IθΣ〉 and 〈o, I〉 are congruent in Σ by proposition 52

=⇒ IθΣ simulates I in Σ

=⇒ IθΣ is an exhaustive 〈Σ, θ〉 model. by theorem 32
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64 Theorem. For each signature Σ, for each theory θ, there exists a Σ interpretation I
such that

I is an exhaustive 〈Σ, θ〉 model.

An immediate corollary of Theorem 64 and the definition of an exhaustive model 22 is
that if a grammar has a non-empty model then it has a non-empty exhaustive model.
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