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1 RSRL

1 Definition. Var is a countably infinite set of symbols.
2 Definition. Y is a signature iff

Y. is a septuple (G,C, S, A, F, R, AR),
(G,C) is a finite partial order,
for each o' € G, }

if o' C o then o = o’

S:{JEQ

A is a set,

F is a partial function from the Cartesian product of G and A to G, and

for each o1 € G, for each o9 € G and for each o € A,

if F{oy, ) is defined and o3 C 0y
then F (o9, ) is defined and F(oy, a) T F(oy, @),

R is a finite set, and

AR is a total function from R to INT.
Suppose S is a set. Throughout this paper we write S as an abbreviation for S U S*.
3 Definition. For each signature ¥ = (G,C, S, A, F, R, AR), I is a ¥ interpretation iff

I is a quadruple (U, S, A, R),

U is a set of objects,

S is a total function from U to S,

A is a total function from A to the set of partial functions from U to U,

for each o« € A and each u € U,

if A(ar)(u) is defined
then F(S(u),a) is defined, and S(A(a)(u)) C F(S(u), ), and

for each o« € A and each u € U,
if F(S(u), a) is defined then A(a)(u) is defined,
R is a total function from R to the powerset of U, and

for each p € R, R(p) C TR,

4 Definition. (Chain, C°) is the smallest partial order such that
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Chain = {chain, echain, nechain},

echain C°¢ chain, nechain T chain.

5 Definition. For each signature ¥ = (G,C, S, A, F, R, AR),
G = G U Chain U {metatop},
C=CuLCe U{(a, metatop) ‘0 € QA},l

= S U {echain, nechain}, and

— AU {15}

ﬁ;) 0))|

6 Definition. For each signature ¥ = (G,C, S, A, F, R, AR), for each ¥ interpretation
I=(US AR),

S is the total function from U to S such that

for each u € U, S(u) = S(u),

for each u; € U, ..., for each u,, € U,
N echain  ifn =0,
S({ut, -y up)) = { nechain ifn >0 ’ and

A is the partial function from A to the set of partial functions from U to U such that
for each o € A, A(a) = A(a), and
A(t) is the total function from U* to U such that for each (ug, . ..,u,) € UT,
A (ug, - . ., un)) = uo, and
A(>) is the total function from Ut to U* such that for each (ug, ..., u,) € U*,
AC) (g, ... un)) = (U, ..., up).

7 Definition. For each signature ¥, for each ¥ interpretation I = (U, S, A, R),

—=Var . . . :
Ass; =U " is the set of variable assignments in I.

8 Definition. For each signature ¥ = (G,C, S, A, F, R, AR), T* is the smallest set
such that
e T™,
for each v € Var, v € T>, and
for each a € A and each 7 € T, ra € T=.

'Note that <QA, §> is a finite partial order.
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9 Definition. For each signature ¥ = (G,C, S, A, F, R, AR), for each ¥ interpretation
I ={(U,S, A R), for each ass € Assy, T®* is the total function from T* to the set of partial
functions from U to U such that for each u € U,

T85(:)(u) is defined and TF(: )(u) = u,
for each v € Var, T#*5(v)(u) is defined and T (v)(u) = ass(v),
for each 7 € T*, for each o € A,

T8 (tar)(u) is defined
iff T2(7)(u) is defined and A(a)(T?5(7)(u)) is defined, and

(
if T# (1) (u) is defined
then TF(ta)(u) = ﬁ(a)(Tf‘SS(T)(u)).

10 Definition. For each signature ¥ = (G,C,S, A, F, R, AR), D* is the smallest set
such that

for each o € G, for each 7 € T, 7~0 € D,

for each 7, € T%, for each 7 € T, Ti~T, € D%,

for each p € R, for each x1 € Var, ..., for each x g, € Var, p(z1,...,Tar()) € D>,
for each x € Var, for each § € D*, 3z 6§ € D*,

for each x € Var, for each § € D*, Vx § € D*,

for each 6§ € D*, =6 € D*,

for each 6, € D*, for each 6y € D=, [6; A 8] € D*,

for each 6, € D*, for each 6y € D*, [6; V 8] € D*,

for each &, € D*, for each 6, € D, [6; — 6,] € D*, and

for each &, € D*, for each 6, € D, [6; « 6, € D*.

11 Definition. For each signature ¥ = (G,C, S, A, F, R, AR),

FV(:)=0,

for each v € Var, FV (v) = {v},

for each T € T, for each a € A, FV(ra) = FV (1),

for each T € T, for each o € G, FV (1 ~ o) = FV (1),

for each 71,79 € T, FV (11 & 13) = FV (1) U FV (1),

foreach p € R, foreachxy,...,xar () € Var, FV(p(x1,...,Tar(p))) = {Z1, - -, TAR() }
for each § € D, for each v € Var, FV (Fv §) = FV(§)\{v},

for each § € D, for each v € Var, FV (Vv §) = FV(§)\{v},
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for each 6 € D*, FV(=6) = FV (6),

for each 8, € D*, for each 6y € D=, FV (6, N\ 63) = FV(6,) U FV (6),

for each 8, € D*, for each 6y € D=, FV (6, V 63) = FV(6,) U FV (6),

for each 8, € D*, for each 6y € D=, FV (6, — 63) = FV(61) U FV (&), and
for each &, € D*, for each 6, € D¥, FV (6, « 63) = FV(61) U FV(6,).

12 Definition. For each signature ¥ = (G,C, S, A, F, R, AR), for each ¥ interpretation
I ={(U,S, A, R), and for each u € U,

for some ass € Assy,

for some m € A*,
T7%(:m)(u) is defined, and
W = TP ()

Coj=<Su €U

We call Co} the set of components of u in I.

13 Definition. For each signature 3, for each X interpretation I = (U, S, A, R), for each
ass € Ass;, for each v € Var, for each w € Var, for each v € U,

u ifv=w
ass(w) otherwise.

wsst () = {

14 Definition. For each signature ¥ = (G,C, S, A, F, R, AR), for each ¥ interpretation
= (U, S, A, R), for each ass € Ass;, D?* is the total function from D* to the powerset of

U such that
for each 7 € T=, for each o € G,

D™ (r ~ o) = {ue U T25(7)(u) is defined, and}’

S(T7(r)(u)) E o

for each 7, € T*, for each 7 € T~,

T7%%(79)(u) is defined, and

T7%5(m)(u) is defined,
D?SS(leTQ){UEU }
T7%(n)(u) = T7(72) (u)

for each p € R, for each x, € Var, ..., for each x4z, € Var,

D (p(x1, - -, Tar()))
= {u elU ’<ass(:c1), .. .,ass(xAR(p))> € R(p) }7

for each v € Var, for each § € D*,
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!
ass

D3 ={ueU
u€ D v (0)

for some u' € Cof, }
)

for each v € Var, for each § € D*,

!
ass
v

DE(Vwé)={uel
u€ Dy " (6)

for each v’ € Coj, }
)

for each § € D~,
D(=6) = U\DF*(6),
for each 8, € D%, for each 6, € D~,
D=([61 A bo]) = DF(61) N D7(62),
for each &, € D*, for each &, € D¥,
D=([61V 62]) = D=(61) U Di(62),
for each &, € D¥, for each &, € D¥,
D([61 — &]) = (U\DF*(6)) U Di*(6,), and
for each 8, € D%, for each 6, € D~,
DE([61 < &]) = (U\DF*(61)) N (U\DF*(62))) U (D7™(61) N DF*(62))-
15 Proposition. For each signature Y, for each X, interpretation I, for each ass; € Assy,
for each assy € Assy,
for each 7 € T,
if for each v € FV(7), ass1(v) = assy(v) then 17> (1) = 17°*(7), and
for each § € D¥,

if for each v € FV (), ass;(v) = assq(v) then D7 () = D7™(0).

16 Definition. For each signature %,

DS = {5 € D” | FV(6) = 0}.

17 Corollary. For each signature ¥, for each § € D, for each ¥ interpretation I, for
each ass; € Assy, for each assy € Assg,
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D(8) = Dr(6).

18 Definition. For each signature X, for each ¥ interpretation I = (U, S, A, R), Dy is
the total function from Dy to the powerset of U such that for each § € Dy,

D[((S) = {u € U = D?ss(é)

for each ass € Assy, }

19 Definition. For each signature X, for each 3 interpretation I = (U, S, A, R), Oy is
the total function from the powerset of D§ to the powerset of U such that for each § C Dy,

@[(0) = {u ceU

for each 6 € 0,
u € D[((S) '
20 Definition. I' is a grammar iff

[ is a pair (X,6),
Y} is a signature, and
6 C D

21 Definition. For each grammar ' = (3, 0), for each ¥ interpretation I = (U, S, A, R),

I'is al model iff ©1(0) =U.

22 Definition. For each grammar ' = (X,0), for each ¥ interpretation I,
I is an exhaustive I' model iff

I is a I" model, and
for each §' C Dy, for each ¥ interpretation I’,

if I' is a I’ model and ©.(0") # 0,
then ©(0") # 0.
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2 A Different Characterization of Exhaustive Models
Suppose that S is a set. We write S* for (5)* and S** for (S*)*.

23 Definition. For each signature %, for each X interpretation I; = (Uy, S1, Ay, Ry), for
each uy € Uy, for each ¥ interpretation Iy = (Us, S, As, Rs), for each uy € Us,
f is a congruence from (uq, I;) to (us, I5) in X
iff f is a bijection from W}‘j to W}f,
for each u € Co}?, Si(u) = Sy(f(w)),
for each o € /T, for each u € W’}f,

Eﬁg)(u) is defined 1&";1\2((1)(]111)) is defined, and
if A1(«)(u) is defined then f(A;(a)(u)) = As(a)(f(u)),

for each p € R, for each o; € Coj!,..., for each o4z, € Coj!,
<017 DI OA’R(p)) € Rl(p) iff <f(01)7 Ceey f(OAR(P))> € RQ(ﬂ); and
fur) = us.

A first object in a first interpretation and a second object in a second interpretation
are congruent iff there is a species, attribute and relation preserving bijection from the
components of the first object in the first interpretation to the components of the second
object in the second interpretation such that the bijection maps the first object to the second
object.

24 Definition. For each signature X, for each ¥ interpretation I; = (Uy, S1, A1, Ry), for
each uy € Uy, for each ¥ interpretation Iy = (U, So, Ao, Ry), for each us € Us,

(ug, I1) and (ug, Is) are congruent in ¥

iff for some f, f is a congruence from (uy, I1) to (us, I5) in 3.
25 Definition. For each signature %, for each X interpretation I; = (Uy, S1, Ay, Ry), for
each uy € Uy, for each ¥ interpretation Iy = (Us, S, As, Ry), for each uy € Us,

(u1, I1) and (ug, Iy) are indiscernible in %
iff for each 6 € DY, uy € Dy, (6) iff uy € Dr,(6).

We use a standard definition of functional composition:

26 Definition. For each set U, for each set V', for each set W, for each total function
f from U to V, for each total function g from V to W,

g o f is the function from U to W such that, for each u € U,

go flu) = g(f(u)).
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By proposition 15 the following definition is well-made.

27 Definition. For each signature ¥ = (G,C, S, A, F, R, AR), for each X interpretation
I = (U,S, A, R), Ty is the partial function from the Cartesian product of A* and U to U
such that

for each m € A*, for each u € U,

Ti(m,u) is defined iff for some ass € Assy, T?%(:m)(u) is defined, and
if Ty(m,u) is defined then for some ass € Assy, Tr(m,u) = T7%(:m)(u),

for each (my,...,m,) € A**, for each u € U,

Tr({m1,...,m),u) is defined

iff Ty(my,u) is defined, ..., Ty(m,,u) is defined, and
if Tr((my,...,mn), u) is defined

then Ty ((my, ..., mn),u) = (Ti(my,u), ..., Tr(mp, w)).

28 Proposition. For each signature X, for each ¥ interpretation I, = (U, S1, A1, Ry),
for each oy € Uy, for each ¥ interpretation Iy = (U, Sa, Ag, Rs), for each oy € Us,

(01, I1) and (o9, I5) are congruent in ¥ iff (01, I1) and (0, I) are indiscernible in ¥..

Proof. Firstly, for each signature X, for each ¥ interpretation I, = (Ui, S1, Ay, Ry), for
each oy € Uy, for each ¥ interpretation Iy = (U, Sy, Ag, Rs), for each oy € U,, for each
congruence f from (o1, I1) to (09, I5),

for each 7 € T*, for each total function ass from Var to Co7!,

TfalSS(T)(Ol) is defined iff Tlf;aSS(T)(OQ) is deﬁned, and

if T85(7)(01) is defined then f(T3(7)(01)) = TL**(7)(02), and
by induction on the length of T

for each § € D, for each total function ass from Var to Cofr,

01 € D§®(8) iff 0y € DI*(6). by induction on the complexity of
(since, for each o € U, f o (ass?) = (f o ass) L))

T

Thus, for each signature %, for each ¥ interpretation I; = (Uy, S1, A1, Ry), for each o, € Uy,
for each ¥ interpretation Iy = (Us, So, As, Ra), for each oy € Us,

(01, I) and (09, I3) are congruent in %
— for some congruence f, f is a congruence from (01, 1) to (09, I5) in X

= for each § € DY,
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01 € Dh (6)
<= for each ass € Assy,, 0, € D¥*(0)

<= for some ass € Assy,,

01 € D§(6) and, for each v € Var, ass(v) € CoJ* by corollary 17

<= for some ass € Assy,,

05 € D¥5(8) and, for each v € Var, ass(v) € Co??
<= for each ass € Assy,, 0o € DE(0)
< 09 € Dp, ()

— (01, 11) and (09, I) are indiscernible in X.

Secondly, suppose ¥ = (G,C, S, A, F, R, AR) is a signature, I; = (Uy, S1, A1, Ry) is a &
interpretation, o € Uy, Iy = (Us, Sa, Aa, Ry) is a ¥ interpretation, oy € Us, and (o1, I1) and

(09, I3) are indiscernible in X.

Firstly, for each m € A*, Ty, (7, 01) is defined iff Tr, (7, 02) is defined.

by induction on the length of ™

for some T € A*
Ty, (m,01) is defined,
Secondly, let f = { (0}, 05) € Co7' x Cof T12 (7r 09) is defined,
Ty, (7, 01), and

( >02)

f is a bijection from Co7! to Cof’

Let f be the total function from Coj' to Co3? such that,

for each u € Cof', f(u) = f(u),_and
for each (uy, ..., un) € (Co)*, f({ur, ..., un)) = (f(u1), ..., fun)).

Clearly, f is a bijection.

Thirdly, for each u € Co7', Si(u) = Sy(f(u)). Thus, for each u € Cof, Si(u) =

Sa(f(u)).

Fourthly, for each o € A, for each u € Cof!,

Aj(a)(u) is defined iff Ay()(f(u)) is defined, and
if A1(«)(w) is defined then f(A;(a)(u)) = As(a)(f(u)).

Thus, for each a € A, for each u € Co* T

1/4\19)@) is defined 1521\2(04_)(7/@)) is deﬁnﬁfl, anci
if A1(«)(u) is defined then f(A;(a)(u)) = As(a)(f(u)).
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Fifthly, for each p € R, for each u, € Co7!, ..., for each u, € Coj;

17
(ug,...,u,) € Rp(p),
<= for some 1, € A*, ..., for some T, € A*,

uy =T (m,01), .y uy = Tp (mn,01), and (uy, ..., u,) € Ry, (p)

<= for some 1, € A*, ..., for some T, € A*,

uy =T (m,01),. .. Uy = Tp (m,,01), and

01 € Dr,(3xy ... 3z, (p(x1, ..oy 20) A 2y &imy A ATy & Ty,))?
<= for some m; € A*, ..., for some T, € A*,

f(ur) =Tr,(m1,02), -« o, f(un) = T, (T, 02), and
09 € Dp,(Fzy ... 3z, (p(x1,...s20) AN 1R Ao ATy RiT,))

< for some m; € A*, ..., for some 7, € A*,

7(u1) = TI2 (77-17 02)7 ce 77(“”) = TI2 (ﬂ-na 02)7 and <?(u1)a T 77(un)> € RI2 (/0)

<= (f(w), ..., f(un)) € Re,(p).

Finally, f(0,) = 0s.

Therefore, f is a congruence from (o1, I1) to {09, I5) in X. {0y, I,) and {0y, I5) are, thus,
congruent in X.. [ |

29 Definition. For each signature X, for each ¥ interpretation I, = (Uy, S1, A1, Ry), for
each ¥ interpretation Iy = (Us, So, Ag, Ra),

I, simulates I, in ¥

iff for each us € Uy, for some uy € Uy, (uy, 1) and (us, L) are congruent in X.

A ¥ interpretation I; simulates X interpretation I, just in case every object in I5 has a
congruent counterpart in I;.

30 Proposition. For each signature ¥,
for each ¥ interpretation I,
I simulates I in i, and
for each ¥ interpretation I, for each Y interpretation I, for each Y. interpretation I3,

if I} simulates I, in ¥ and I, simulates Is in ¥ then I; simulates I3 in .

31 Proposition. For each signature X, for each § C DY, for each ¥ interpretation I,

2We write x ~ «(m1,...,mp) as an abbreviation for zf ~:m; A...A N T i1 A A o™ ~ echain
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for each ¥ interpretation I,
if I' is a (X, 6) model then I simulates I' in %2
iff for each §' C D, for each ¥ interpretation I’,
if I' is a (3, 6) model and ©1,(0") # () then ©(0") # (.

Proof. Firstly, for each signature ¥, for each § C Dy, for each Y interpretation I =
<U’ S’ A? R>7

for each ¥ interpretation I' = (U', S’ A’ R'),
if I' is a (X, 6) model then I simulates I’

= for each §' C D, for each ¥ interpretation I' = (U',S', A, R'),
I' is a (X,6) model and ©1.(0") # 0

= [ simulates I’ in 3 and, for some v’ € U, v’ € Op/(0")

= for some u € U, for some u' € U’,
(u, I) and (u',I'}y are congruent in ¥ and v’ € ©p/(6)

= for some u € U, for some u' € U’,
(u, I} and (v, I'}) are indiscernible in ¥ and v’ € ©5(0') by proposition 28

= for some u € U, u € 0/(¢)

Secondly, for each signature ¥, for each § C Dy, for each ¥ interpretation I = (U, S, A, R),

for each §' C Dy, for each ¥ interpretation I’
if I' is a (X, 0) model and ©1:(0") # () then ©;(0") # ()

— for each ¥ interpretation I' = (U',S", A’, R'),
I' is a (X,0) model

— for each v/,
u e U’
:u’e@p{éeD§

'€ Dp(6) }

— Op {8 €D |u' € Dp(8) } #£0

— 0, {6€D}|u € Dp(6) } #0

:>forsomeuEU,uE@1{6€D§

u' € Dp(6) }
= for some u € U, for each § € D,

(IS D[(é)
— U ¢ D[(ﬁé)



3 EXISTENCE PROOF FOR EXHAUSTIVE MODELS 12

— 6 ¢ {6 €D}

u' € Dp(6) }
= v &€ Dp(—0)

= u' € Dp(9), and

uw € Dp(6)

:66{662)02

u' € Dp(6) }
= u € Dy(0)
— for some u € U, (u,I) and (u',I') are indiscernible in %
— for some u € U, (u,I) and (u',I') are congruent in ¥ by proposition 28

— [ simulates I’ in 2.

32 Theorem. For each signature 3, for each § C D, for each ¥ interpretation I,

I is an exhaustive (X, 0) model

iff I is a (X, 0) model, and for each ¥ interpretation I,

if I' is a (X, ) model then I simulates I' in 3.

3 Existence Proof for Exhaustive Models

In this section we show that, for each grammar, there exists an exhaustive model. For each
grammar (%, #), we construct a 3 interpretation which we call the canonical ¥ interpretation
of . We then show that the canonical X interpretation is an exhaustive model of the grammar
(3, 0).

Suppose ¥ = (G, C, S, A, F, R, AR) is a signature. We call each member of A* a ¥ path,
and write € for the empty path, the unique path of length zero.

33 Definition. For each signature ¥ = (G,C,; S, A, F, R, AR),

| is a morph in X
iff p is a quadruple (3, o, \, &),
pC A,
€€ B,
for each m € A*, for each a € A,
if ra € B then 7 € (3,

0 is an equivalence relation over (3,

for each m € A*, for each my, € A*, for each o € A,
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if ma € B and (my,m) € o then (ma, ma) € o,
A is a total function from (3 to S,
for each m € A*, for each my, € A*,
if (71, ma) € o then \(m) = A(m2),
for each m € A*, for each a € A,
if rav € B then F(\(), o) is defined and \(ma)) C F(A\(7), o),
for each m € A*, for each a € A,
if 7 € 0 and F(\(r), ) is defined then Ta € 3,
ECRXP,
for each p € R, for each m, € f3,..., for each m, € 3,
if (p,m1,...,m,) € & then n = AR(p), and

for each p € R, for each m; € 3, ..., for each w, € 3, for each 7} € 3, ..., for each
T € 0,
if {p,m1,...,m,) €&, and
for each i € {1,...,n},
m; € B and (m;, ) € o, or
for some m € IN,

;€ 6*7
T, = <7Ti1>- .. 77Tim>7
= (m,,...,m ), and

(i, M) € 0, oy (Wi T ) € 0,
then (p,n,... 7 ) €E.

Suppose X is a signature and pu = (3,0, A, &) is a ¥ morph. We call § the basis set in
1, 0 the re-entrancy relation in p, A the label function in p, and & the relation extension in
1. We write My, for the set of ¥ morphs. Our ¥ morphs are a straigthforward extension of
abstract feature structures in the sense of (Moshier 1988).

34 Definition. For each signature ¥ = (G,C,S, A, F, R, AR), for each m € A*, for
each (my,...,m,) € A,

m(m1,...,m,) Is an abbreviatory notation for (mmy, ..., mm,).

35 Definition. For each signature = (G,C, S, A, F, R, AR), for each p = (3,0, \,§) €
My, for each m € A*,

B/m ={r" € A* | nn’ € 5},

o/m = {(my,m) € A* x A* | (771, wma) € 0},

MNrm={(n",0) e A* xS | (nn',0) € \},

¢/m={{pm,....,m) € Rx(B/n) | (p,7my,...,wm,) € £}, and
p/m=(B/m, o/m N &/m).
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If ¥ is a signature, p is a ¥ morph and 7 is a ¥ path then we call u/7 the 7 reduct of pu.

36 Proposition. Foreach signature = (G,C, S, A, F, R, AR), for each u = (3, 0, \,§) €
My, for each m € A*,

if m € § then p/m € Msy.

37 Definition. For each signature ¥ = (G,C, S, A, F, R, AR),

I is the set of total functions from Var to A*.
Let X be a signature. Then we call each member of Iy, a ¥ insertion.
38 Definition. For each signature ¥ = (G,C, S, A, F, R, AR),

Ty, is the smallest partial function from A* x A to A* such that,

for each m € A*, for each a € A,
Ty(m, a) = Ta,
for each (g, ..., m,) € A™,

Ts((mo,...,m), T) = mo,
Ts((m0, -, Tn),>) = (71, ..., Tn)-

39 Definition. For each signature ¥ = (G,C, S, A, F, R, AR), for each 1 € Iy,

I, is the smallest partial function from T> to A* such that

II4.(:) = ¢,
for each v € Var, II§(v) = «(v), and
for each T € T, for each o € A, TI4(1) = Ty (ITg(7), ).

Suppose X is a signature, and ¢ is a ¥ insertion. Then we call each II§; the path insertion
function for ¢ in 3.

40 Definition. For each signature ¥, for each (3, o, \, &) € My,
0 is the smallest subset of 3 x (3 such that

0 C 0, and
for each my € 3,...,m, € B, for each 7} € B3,..., 7, € 3,

if (m, 7)) €0, ..., and (m,,7,) € 0

n

then ((my,...,mp), (7}, ..., 7)) € 0,

) is the total function from B to S such that
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for each m € B, A7) = A(w),

for each m € 3, ..., for each m, € (3,
Q echain  ifn =0,
AT 7)) = { nechain if n > 0.

41 Definition. For each signature ¥ = (G,C, S, A, F, R, AR), for each 1 € 15y, A} is
the total function from D* to My, such that

for each T € T*, for each o € QA,

for some o’ € S,

I14,(7) is defined, and, }
(Ig(7),0"y € Aand o' E o

ALE(T NU) = {<57 Qa)‘>§> € ME

for each 7y € T*, for each 7 € T,

14 (72) is defined, and

ALE(TI ~ 7—2) = {<ﬁ’ 0, )‘7€> € MZ
(I (1), I (72)) € 0

I1% () is defined, }

for each p € R, for each v, € Var, ..., for each v, € Var,
A (p(vr, - -,vn)) = {(B,0,1,8) € Ms [ (p,1(vr), -, 1(vn)) € £},
for each v € Var, for each § € D*,

AL (Fv ) = {(5, 0,\, &) € My for some m € f3, n }7

(3,01, ) € ALY

for each v € Var, for each § € D*,

Ay (Vo 6) = {(ﬂ, 0, \, &) € Mx for each m € 3, ) }7

(3,01, ) € ALY

for each 6 € D*,
Ay (0) = M\Ag(6),

for each 6, € D¥, for each &, € D¥,
A5 ([61 A 65]) = A5(61) N A% (62),

for each 8, € D%, for each 6, € D~,
Ag([61V 65]) = A% (61) U Ag(62),

for each &, € D¥, for each 6, € D*,
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Ag (6 — 63]) = (Ms\Ag(61)) U A5(62), and
for each &, € D¥, for each &, € D¥,
A5 ([61 < 62]) = (Ms\AK(61)) N (Ms\AL(02))) U (A% (1) N A5(62))-

Let X be a signature, ;1 a ¥ morph, ¢ a ¥ insertion and § a ¥ description. We call A, the
morph satisfaction function in 3, and say p satisfies 6 under ¢ in ¥ if and only if A% (6) = p.

42 Proposition. For each signature ¥, for each 1, € Iy, for each 15 € Iy,

for each 7 € T,

if for each v € FV(7), t1(v) = 12(v)

then T1g (1) is defined iff II(7) is defined, and
if II$ (1) is defined then 113 (1) = [1$%(7), and

for each 6§ € D*,

if for each v € FV(8), t1(v) = t2(v)
then A$ () = AZ(6).

Proof. By induction on the length of T and the complexity of 6, respectively. [ |
43 Definition. For each signature ¥,

Ms, is the total function from Pow(Dy) to Pow(Mysx) such that for each § C D,

(8,0,1,8)/m = Ag(9)

Let ¥ be a signature. We call My, the morph admission function in .

My, (6) = {w’ 0\ £) € My for each w € 3, for each 1 € Iy, for each 6 € 0, }

44 Definition. For each signature ¥,

o0 is a canonical object in X
iff 0 is a quintuple (3, 0, \,&,n),
(B,0,\,&) € My, and
1 € Quo(o).®
Suppose that ¥ is a signature. We write Cy, for the set of canonical objects in 3. Suppose

further that (3,0, &) € My and m € 5. We write |r|, for the equivalence class of 7 in

o. Thus, we write (3,0, \,&,|n|,) for the canonical object (3,0, &, n), where n is the
equivalence class of 7 in g.

45 Definition. For each signature 3, for each 0 € Dy, for each ({3, 0, \, &, |T1l,), - - -,
<ﬁ7 o, >‘7 g? ‘ﬂ-n‘g>> S (U%)*7

3 Quo(p) is the quotient of g, i.e., the set of equivalence classes of .
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(B, 0, A\, &, |(m1, ..., mn)|,) Is an abbreviatory notation for

<<67 Qu )‘7€7 |7T1|Q>’ Tty <67 Qu )‘7€7 |7T7l|0>>'

46 Definition. For each signature ¥ = (G,C, S, A, F, R, AR), for each § C D,

U% = {(ﬁa 0, A;éaﬂ) € CE ‘<ﬁa 0, )‘>€> € ME(H) };

for some <ﬁa 0, )‘7€> € MZ(0)7
for some 7 € (3,

u= <67Q7)‘7€7‘7T’Q>7 and ’
o= )

AY is the total function from A to Pow(U% x UY) such that for each a € A,

S% ={ (u,0) € UL x S

for some <ﬁ: 9, )‘7§> € M2(9)7

for some ™ € 3
9 () _ ' 4 4 ;
AE(CY) = <U,U> S U2 X UE u = <6; 0, )‘7€7 |7T|Q> and 7

ul - <57 0, Aaga |7TO[|Q>
RY is the total function from R to the powerset of U—%* such that for each p € R,

<U1, R ,Un> fOI' some <67 0, )\7 §> € ME(G);

o for some (p,my,...,m,) €&,
9

Uy = <67 0, )‘7€7 |7T1|Q>7 ceey Up = <67 97)‘7§a |7rn|g>

R (p) =

I% = <U627 S%’ A%v R%)

47 Proposition. For each signature ¥ = (G,C, S, A, F, R, AR), for each § C D,

UY is a set,

S% is a total function from U% to S,

AY is a total function from A to the set of partial functions from U% to U%,
RY is a total function from R to the powerset of U—%*, and

I is a ¥ interpretation.

Let ¥ be a signature and 8 C D, We call I% the canonical ¥ interpretation of 6.

48 Proposition. For each signature ¥ = (G,C, S, A, F, R, AR), for each (3, 0, \, §, |7|,) €
Cyx, for each total function ¢« from Var to 3/x, for each 7 € T=,

if T14,(7) is defined and I14(7) € A**
then wlli (1) € 5.

Proof. By arithmetic induction on the length of T. |

49 Proposistion. For each signature ¥, for each § C Dy,
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1% is a (%, 0) model.

Proof. Throughout this proof, suppose that, for each signature %3, for each § C Dy, for
each o = (83,0, \, &, ||,) € UY, for each total function v from Var to 3/x,

asst is the total function from Var to U% such that
for each v € Var, ass(v) = (8, 0, A, &, |mL(v)],)-

Firstly, for each signature X, for each § C D, for each o = (8, 0,\, &, |7|,) € , for each
T € T, for each total function ¢ from Var to ﬁ /7,

Tase ( )((B, 0, \, &, |l,)) is defined iff T14(7) is defined and 7ll4(T) € (3, and

if ngs"(T)(w, 0.\, &, |ml,)) is defined
then Ty (7) (8, 0,1, €, 7o) = (B, 0, A, &, ImIl(7) ).

by proposition 48 and arithmetic induction on the length of T

Secondly, for each signature ¥ = (G,C,S, A, F, R, AR), for each 0 C Df, for each o =
(B,0,\,&,|7l,) € UL, for each total function v from Var to 3/,

for each 7 € T*, for each o € G,
(B, 0. 1€ Iml,) € D™ (1 ~ 0)
= T (1) (B, 0, N, € Iml,)) is defined and SO T35 2 (1) (B, 0. M., [7],))) E o
= TI4(r) is defined, 7114() € B, and S&((B, 0, \, &, |7114(7)|,) € o
<= II§(7) is defined, and )\//\7T(HL§;(7—)) Co
— (B0 8)/me Ag(T ~0),
for each 7y € T*, for each 7 € T,
(B, A&, I7lo) € D™ (m ~ )
= T‘rleS (1) ((B, 0, \, &, |],)) s defined, ngzssé(’rg)(<ﬂ, 0.\, €, ||,)) is defined, and
Ty () (B, 0, A, € Imlo)) = Ty (1) ((B, 0, A €, I],)
<= [I4(m) is defined, wll4(11) € B, I4(7) is defined, 71l () € B, and
(8, 0,1, |71l (71)]o) = (B, 0, A, &, [71I5(72)[o)
<= II4(ny) is defined, 114 (12) is defined, and (114 (1), 1 (2)) € Q//;F
= (B0 8)/m € Ay(n = n),

for each p € R, for each x, € Var, ..., for each x4r(,) € Var,
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(B,0,A, &, [m]o) € Dass (p(21,- - TAR()))
= (assy(z1),. .., as8y(zar(p))) € RE(p)
= (B0, M & [me(@1)]o)s -5 (85 0, A & [Tl ar(p)]o)) € RE(p)
= (o, mu(x1), - TUTAR())) €€
= (p, (1), UTar(p)) € &/
= (B,0,\8)/m € Ag(p(a1, ..., TaR(p)))-

Thus, for each signature ¥, for each § C DY, for each o = (83, 0, \, &, |7|,) € UYL, for each
6 € D*, for each total function ¢ from Var to 3/,

(B, 0.\, |mlo) € D™ (8) iff (B, 0.1, €)/m € A(0).

by arithmetic induction on the complexity of ¢

/
o

<ngv)‘7£7|ﬂ-ﬂ-,|9> — ¢ v
> = ass,’ )

(since, for each ' € 3/, ass!
Thus, for each signature 3, for each § C Dy, for each (3, 0, \, &, |7|,) € Cs,
(8,0.A&,I7],) € U
= (B,0,M,& Iml,) € UY, (B,0,A,€) € Mc(0) and 7 € §
= (8,0, ],) € US

for each & € 0, for each total function ¢ from Var to 3/,

(B,0,1,6)/m € Ag(6)

— for each 6 € 0, for each total function ¢ from Var to W,
(B,0,\,¢ Iml,) € Dy (6)

= for each ¢ € 0, for some ass € AssloE ,
(8,0, A€, Imlo) € D=(6)

= for each 6 € 0, for each ass € Asslez,

(B,0,\,&,Iml,) € ass((s) by corollary 17

— (B,0,A,,|7],) € O (0).
u

50 Definition. For each signature ¥ = (G,C S, A, F, R, AR), for each ¥ interpretation
I={(U,S, A R),

A; is the binary relation on U x My such that, for each u € U, for each (3, 0, \, &) €
Ms, (u, (B, 0,A,6)) € Ap iff
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e A

f=

Ty(m,u) is deﬁned}

71, M) € A* X A* | T7(me,u) is defined, and 3,
Tl(ﬂ-la ) = TI(WQa U)

{ Tr(my,u) is defined,
{ m,0) € A" xS

Tr(m,u) is defined,
S(TI(W>u)) =0 ’

Ty(my,u) is defined, ...,
E=S{p,m,...,m) € R x (A*)* | T1(m,,u) is defined, and
(Ti(m, ) ... Ty(mpw)) € R(p)

51 Proposition. For each signature %, for each ¥ interpretation I = (U, S, A, R),

A; is a total function from U to Ms.

52 Proposition. For each signature X, for each ¥ interpretation I, = (U, S1, A1, Ry),
for each ¥ interpretation Iy = (Us, So, As, Ry), for each o, € Uy, for each oy € Us,

Az (01) = Ar,(02)

iff {01, I1) and (o9, I3) are congruent in ..

Proof. Firstly, for each signature ¥ = (G,C. S, A, F, R, AR), for each ¥ interpretation
I, = (Ui, S1, A1, Ry), for each ¥ interpretation Iy = (Us, So, As, Ry), for each o, € Uy, for
each oy € Uy,

Ar (01) = Ap,(02)

for some 7 € A*,
Ty, (7, 01) is defined,
— { (0},04) € U1 x U T12(7T 09) Is defined,
01 = TI (m,01), and

Ty, (m,09)

is a congruence from <01, Il> to (0q, I5) in &

= (01, 1) and (02, Iy) are congruent in X.

Secondly, for each signature ¥ = (G,C, S, A, F, R, AR), for each ¥ interpretation I; =
(Ui, S1, A1, Ry), for each ¥ interpretation Iy = (Us, Sa, Ag, Ry), for each o, € Uy, for each
09 € Ug,

(01, I) and (09, I5) are congruent in %

— for some f, f is a congruence from (o1, I1) to (0g, I5)
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— for some congruence f from (01, 1) to (09, I5), for each m € A*,
Ty, (7, 01) is defined iff Ty, (7, 05) is defined, and

if Ty, (7, 01) is defined then f(Ty,(m,01)) = T, (7, 09)
by induction on the length of 7

= Afl(ol) = AI2(02)‘

53 Lemma. For each signature 3, for each (3, 0, \,§) € My,
for each T € T*, for each v, € Iy, for each 15 € Iy,
if for each v € Var, 1;(v) € B and 15(v) € (3, and
for each v € FV (1), (11(v),12(v)) € 0
then 113 (1) is defined and 11 (1) € B iff 1E(7) is defined and I1E(7) € 3, and
if TIY () is defined and 114 (1) € (3 then (114 (1), 11E(7)) € 0, and
for each 6§ € D>, for each 1, € Iy, for each 15 € Iy,
if for each v € Var, 1;(v) € B and 15(v) € (3, and
for each v € FV (), (11(v),12(v)) € 0
then (5,0, A, €) € A3 (6) iff (B, 0, A, €) € A3(6).

Proof. By proposition 48 and induction on the length of T, and by induction on the
complexity of 6, respectively. [ |

54 Definition. For each signature ¥, for each ¥ interpretation I = (U, S, A, R), for each
o€ U, for each 1 € Iy,

ass, ; = {(U,o’) € Varx U

Tr(II4(v), 0) is defined, and
T; (I (v), 0) = o '

55 Proposition. For each signature 3, for each ¥ interpretation I = (U, S, A, R), for
each o € U, for each (3, 0, \, &) € My, for each 1 € Iy,

if for each v € Var, 1(v) € 3, and
AI(O) = <ﬂ7 9, )\a f)

then ass;, ; € Assy.

56 Lemma. For each signature Y, for each ¥ interpretation I = (U, S, A, R), for each
o € U, for each (83, 0, \, &) € My, for each 7 € T, for each 1 € Iy,
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if for each v € Var, 1(v) € 3, and
AI(O) = <67 0, )‘7 §>

then T?SSZ’I(T)(O) is defined iff T; (Il (1), 0) is defined, and
if T, (7)(0) is defined then T} "' (7)(0) = Ty(TI(r), 0).
Proof. By proposition 48 and induction on the length of T. [ |

57 Proposition. For each signature 3, for each ¥ interpretation I = (U, S, A, R), for
each o € U, for each (3, 0, \, ) € My, for each § € D, for each 1 € Iy,

if for each v € Var, 1(v) € 3, and
AI(O) = <67 0, )‘7 §>
then o € Dy (8) iff (8, 0.\, €) € A(6).

Proof. For each signature ¥, for each % interpretation I = (U,S, A, R), for each o € U,
for each o' € CoY, let #(0’) be a m € (3 such that

o =Ti(rm, o).

We can then show that for each signature X, for each ¥ interpretation I = (U, S, A, R), for
each o € U, for each (83, 0, \, &) € My, for each 1 € Iy,
if for each v € Var, 1(v) € 3, and
AI(O) - <ﬂ7 o, )\a f)

— #(')
/ L
then for each o' € Cof, for each v € Var, ass;, ;> = ass,* , and

for each 7 € f3, for each o' € Co9,
o =Ti(m, o)
= T (#(0),0) = Ti(m,0)
— (#(0),m) €0

— for each 6 € D¥,

/

L) s
(B,0,7,8) € Ay (6) iff (B,0,A,€) € Ay (). by lemma 53

Using this result, the proposition follows by lemma 56 and induction on the complexity of
0. [ ]

58 Lemma. For each signature ¥ = (G,C,S, A, F, R, AR), for each interpretation
I ={(U,S,A,R), for each o € U, for each m € A*, for each ' € A*,

T;(wn’,0) is defined iff Ty(w', Ty(m,0)) is defined, and
if Ty(w’,0) is defined then Ty(wr' 0) = Ty (7', T1(m, 0)).
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Proof. By induction on the length of =’ |

59 Lemma. For each signature ¥ = (G,C,S, A, F, R, AR), for each interpretation
I =(U,S,A,R), for each o € U, for each m € A*, for each ' € A™,

Ty (mn',0) is defined iff Ty(n', T; (7, 0)) is defined, and
if Ty(wn’, 0) is defined then Ty(mn’, 0) = Ty (7', T(m, 0)).
Proof. Follows from lemma 58. [ |

60 Proposition. For each signature ¥ = (G,C, S, A, F, R, AR), for each X interpreta-
tion I = (U, S, A, R), for each o € U, for each m € A*,

if Ty(m, 0) is defined then A;(T;(m,0)) = Ar(o)/7.
Proof. Uses lemma 58 and lemma 59. [ |

61 Proposition. For each signature ¥, for each 3 interpretation I = (U, S, A, R), for
each 6 C D7,

if I is a (3, 60) model
then for each o € U, A;(0) € Mx(6).

Proof. For each signature X, for each ¥ interpretation I = (U, S, A, R), for each § C D,
I is a (X, 0) model
—> for each o € U, for each (3, 0, \, &) € Msx,
(B, 0,A,8) = As(o)

— for each 7 € [3,
(B,0,\,)/m = Ar(T1(m,0)) by proposition 60

— for each w € (3, for each ass € Assy, for each 6 € 0,
<6a 0, )‘7 €>/7T = AI(TI(W7 0)) and TI(T‘-’ 0) € D?SS(&)
— for each 7w € (3, for each total function v:Var — [/, for each 6 € 6,

(8, 0.\, €) /1 = Ap(Ti(r,0)) and Ty(m,0) € D; "1™ (6)
by proposition 55

— for each 7 € (3, for each total function v:Var — [/, for each 6 € 6,
(B,0,A,8)/m € A% (6) by proposition 57

= for each w € 3, for some 1 € Iy, for each 6 € 0,

<6a Qa)‘76>/7TEA§)(6) since ﬁ/ﬂ';’é@
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— for each w € (3, for each 1 € Iy, for each 6 € 0,
(B,0,\, &) /m e Ag(6) by proposition 42

= <6a 0, )‘7€> S MZ(Q)
= for each o € U, A;(0) € Mx(0). by proposition 51

62 Proposition. For each signature X, for each 0 C DY, for each (3, 0, \,§) € Mx(6),

AI%(<£7 0, )‘ugﬁ |5|Q>) = <ﬂ7 9, Aaf)

Proof. Follows from the observation that, for each signature ¥ = (G,C, S, A, F, R, AR),
for each 0 C DF, for each (3,0, \, &, |e|,) € UY, for each m € A,

e iﬁ"TIeZ(W, (B, 0,\, €&, |el,)) is defined, and
if T € (8 then Ty (m, (B, 0, N\, &, |elo)) = (B,0,\, &, |ml,). by induction on the length of w
|

63 Proposition. For each signature 3, for each § C DY,
I is an exhaustive (X, ) model.
Proof. For each signature 3, for each  C Dy,

1% is a (2, 0) model, and by proposition 49
for each ¥ interpretation I = (U, S, A, R),
I is a (X,0) model
— for each o € U,
A;(o) € Mx(9) by proposition 61
— for each o € U, for some (3,0, \,§) € Mx(0),

AI(O) = <67 0, )\7£>7 and
AI%(w’ 0, A& [elo)) = (B, 0.7, €) by proposition 62

= for each o € U, for some o € UY,
(0/,1%) and {0, I) are congruent in by proposition 52
= 1% simulates I in &

= 1% is an exhaustive (3, 0) model. by theorem 32
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64 Theorem. For each signature X, for each theory 0, there exists a 3. interpretation [
such that

I is an exhaustive (X, 0) model.

An immediate corollary of Theorem 64 and the definition of an exhaustive model 22 is
that if a grammar has a non-empty model then it has a non-empty exhaustive model.
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